Preclinical development of new nucleoside-based drug against leukemia
The project aims to develop Carbacitabin (CAB) as a stable, effective treatment for high-risk leukemia patients through preclinical optimization, safety studies, and commercial preparation.
Projectdetails
Introduction
The current treatment landscape for leukemia, particularly concerning AML (acute myeloid leukemia) and MDS (myelodysplastic syndrome), is constrained by the instability of hypomethylating agents which are regularly used in elderly, medically non-fit patients (high-risk). This instability restricts their spectrum of application, leaving a significant gap in effective treatment options.
Despite research into alternative therapeutic approaches, the need for a mild treatment option with high success rates in this patient population remains unmet.
Proposed Solution
Carbacitabin (CAB) emerges as a promising solution to these challenges. This novel epigenetically active compound exhibits enhanced stability against hydrolytic cleavage and enzymatic metabolization.
In AML PDX mouse models, CAB demonstrates significantly improved efficacy and vastly reduced toxicity, making it an optimal candidate for leukemia treatment, particularly for those high-risk patients.
Funding and Objectives
Funding from the ERC PoC aims to support essential preclinical steps towards fully realizing the potential of CAB. These steps include:
- Further optimization of the lead structure of CAB to enhance targeting.
- Thorough preclinical studies to evaluate the safety and efficacy of CAB.
- Scaling up the synthesis of CAB to meet the demand for large-scale production required for preclinical and subsequent clinical trials.
Intellectual Property and Market Position
Furthermore, efforts to solidify intellectual property (IP) protection and conduct an in-depth freedom-to-operate (FTO) analysis are necessary to safeguard CAB's market position.
Spin-off Company and Stakeholder Engagement
Establishing a spin-off company dedicated to the clinical studies of CAB will require engagement with essential stakeholders, including:
- Potential investors
- Pharmaceutical partners
- Legal advisors
- Regulatory consultants
This comprehensive approach will ensure the effective translation of CAB from bench to bedside, bringing new hope to patients, especially those battling AML and MDS.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapyThis project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance. | ERC Starting... | € 1.882.440 | 2024 | Details |
Define a lead candidate for clinical development of a novel T cell therapyT2LEAD aims to develop and commercialize novel CAR T cell therapies targeting unique AML-specific antigens to improve treatment outcomes for acute myeloid leukemia patients. | ERC Proof of... | € 150.000 | 2023 | Details |
Targeting Acute Leukemia with TdT-TCR-T-cell therapyThis project aims to commercialize a novel T-cell receptor therapy for acute lymphoblastic leukemia, demonstrating efficacy in pre-clinical models, with plans for a clinical trial and market analysis. | ERC Proof of... | € 150.000 | 2023 | Details |
Understanding Diagnosing and Early intervention in the Myeloid malignancy ContinuumThe Shlush lab aims to improve early diagnosis and treatment of myeloid malignancies by developing advanced diagnostic tools, exploring preleukemic mutations, and identifying targeted therapies. | ERC Consolid... | € 2.000.000 | 2025 | Details |
Novel T cell therapies against lymphocytic leukaemiaCATCH aims to enhance T-cell activation in chronic lymphocytic leukaemia using CAR-T and tri-specific antibodies, while assessing commercial feasibility and developing a business strategy. | ERC Proof of... | € 150.000 | 2022 | Details |
Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapy
This project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance.
Define a lead candidate for clinical development of a novel T cell therapy
T2LEAD aims to develop and commercialize novel CAR T cell therapies targeting unique AML-specific antigens to improve treatment outcomes for acute myeloid leukemia patients.
Targeting Acute Leukemia with TdT-TCR-T-cell therapy
This project aims to commercialize a novel T-cell receptor therapy for acute lymphoblastic leukemia, demonstrating efficacy in pre-clinical models, with plans for a clinical trial and market analysis.
Understanding Diagnosing and Early intervention in the Myeloid malignancy Continuum
The Shlush lab aims to improve early diagnosis and treatment of myeloid malignancies by developing advanced diagnostic tools, exploring preleukemic mutations, and identifying targeted therapies.
Novel T cell therapies against lymphocytic leukaemia
CATCH aims to enhance T-cell activation in chronic lymphocytic leukaemia using CAR-T and tri-specific antibodies, while assessing commercial feasibility and developing a business strategy.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance. | EIC Transition | € 1.881.875 | 2023 | Details |
The first IVDR-approved commercial software solutions for AI-powered RNA-based companion and precision cancer diagnostics of acute myeloid leukaemia and bladder cancerQlucore aims to revolutionize precision oncology by developing AI-driven diagnostic software for cancer, enhancing accuracy in gene analysis and improving survival rates across Europe. | EIC Accelerator | € 2.491.650 | 2024 | Details |
Next generation, off-the-shelf, non fratricide-directed, CAR immunotherapy for relapse/refractory T-cell acute lymphoblastic leukemiaThe project aims to develop a cost-effective immunotherapy for R/R T-ALL by dual targeting specific antigens using scalable, off-the-shelf CORD-GDT cells to improve patient outcomes. | EIC Transition | € 2.497.500 | 2023 | Details |
Development of a natural therapeutic treatment for late-stage lung cancer patientsCeltic Biotech aims to conduct Phase I Part 3 trials for CB24, a home-administered treatment for NSCLC, to secure regulatory approval and establish it as a safe, effective cancer therapy. | EIC Accelerator | € 2.499.999 | 2023 | Details |
PRO CellecTPan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren. | Mkb-innovati... | € 20.000 | 2021 | Details |
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)
Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance.
The first IVDR-approved commercial software solutions for AI-powered RNA-based companion and precision cancer diagnostics of acute myeloid leukaemia and bladder cancer
Qlucore aims to revolutionize precision oncology by developing AI-driven diagnostic software for cancer, enhancing accuracy in gene analysis and improving survival rates across Europe.
Next generation, off-the-shelf, non fratricide-directed, CAR immunotherapy for relapse/refractory T-cell acute lymphoblastic leukemia
The project aims to develop a cost-effective immunotherapy for R/R T-ALL by dual targeting specific antigens using scalable, off-the-shelf CORD-GDT cells to improve patient outcomes.
Development of a natural therapeutic treatment for late-stage lung cancer patients
Celtic Biotech aims to conduct Phase I Part 3 trials for CB24, a home-administered treatment for NSCLC, to secure regulatory approval and establish it as a safe, effective cancer therapy.
PRO CellecT
Pan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren.