Photonic Spectrum Analyzer for the Terahertz Spectral Domain

PhoSTer THz aims to develop affordable photonic spectrum analyzers for the Terahertz range to enhance component development for 6G and other applications, overcoming limitations of current electronic systems.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

Scientific and commercial utilization of the Terahertz spectrum (100 GHz - 10 THz) is often hindered by the lack of affordable characterization tools for developing systems towards maturity. This proposal aims for the prototype development of such tools, namely affordable spectrum analyzers (SA), in order to boost component development in the Terahertz domain (100 GHz - 10 THz), particularly electronic and opto-electronic components.

Applications

These components are employed in various fields, including:

  • 6G hardware
  • Spectroscopy, including bio-medical trace gas detection
  • Security
  • Non-destructive testing
  • Quality control

Current Limitations

To date, the most employed systems are electronic frequency-extended microwave SAs. Whilst very powerful, they have a few drawbacks:

  1. It is very challenging to develop electronic systems for higher THz frequencies. The highest commercial frequency extension to date goes to 1.5 THz.
  2. The higher the frequency, the exponentially more expensive the frequency extenders become.
  3. The extender modules are bound to specific waveguide bands. Spectra larger than 50% of the center frequency can only be obtained by employing several extender bands.

Proposed Solution

In PhoSTer THz, we will implement a photonic spectrum analyzer system as opposed to electronic ones, with the following advantages:

  1. Spectral coverage from microwaves to several Terahertz with a single system without the need of exchanging bands.
  2. Accessing frequencies not yet accessible with commercial electronic systems.
  3. Inexpensive solution: a single photonic system costs less than the electronic base unit (i.e., without extenders).

Background

PhoSTer THz emerged from the ERC grant Pho-T-Lyze (GA 713780), where the first versions of photonic spectrum analyzers were developed. In PhoSTer THz, we will bring the first prototypes close to market entry together with powerful commercial partners from the photonics industry. We will further aim to attract the interest of electronic spectrum analyzer manufacturers.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-6-2022
Einddatum30-11-2023
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITAT DARMSTADTpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Photonic Vector Network Analyzers

This project aims to develop innovative photonic systems for terahertz characterization, enhancing VNA capabilities to support 6G deployment and diverse applications in communication and beyond.

€ 150.000
ERC Proof of...

HyperSpectral Terahertz neAR-field nanoscope exploiting miniaturized frequency-combs

STAR aims to develop a compact, low-cost, detector-less THz hyperspectral nanoscope for industrial applications, enhancing imaging capabilities across various interdisciplinary fields.

€ 150.000
ERC Starting...

Chip-based room-temperature terahertz frequency comb spectrometers

This project aims to develop a chip-based, room-temperature THz spectroscopy system using mid-infrared laser frequency combs for enhanced imaging and sensing applications.

€ 1.499.995
ERC Proof of...

Terahertz HyperSpectral low-Cost fAst GrapheNe Camera

TeraScan aims to develop a compact, low-cost hyperspectral imaging system using ultrafast graphene detectors for real-time THz applications, targeting industrial integration and commercialization.

€ 150.000
ERC Proof of...

Agile Ultra-Scale Communications Using Optical Arbitrary Waveform Generation and Measurement

TeraGEAR explores innovative optical signal-processing systems to enhance high-speed transceivers and software-defined networks, aiming to develop viable products and a business strategy for market entry.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Nano-scale Development of Plasmonic Amplifiers Based on 2D Materials

This project aims to develop efficient THz wave amplifiers using surface plasmons in novel 2D materials to bridge the THz source gap and enhance THz technology applications.

€ 2.999.191
EIC Accelerator

Smart PHotonic devices Using Novel metamaterials

The SPHUN project aims to create a digital platform for an innovative library of metamaterial-based photonic building blocks to enhance the design of advanced photonic integrated circuits.

€ 1.799.999
Mkb-innovati...

FODAMED - Disruptief fotonisch platform voor datacom en medische diagnostiek

Het FODAMED-project ontwikkelt een nieuw productieplatform voor fotonica, gericht op hoge snelheid optische communicatie en medische toepassingen, om te voldoen aan de groeiende databehoefte.

€ 237.941
EIC Pathfinder

Phase-sensitive Alteration of Light colorAtioN in quadri-parTIte gaRnet cavIty

PALANTIRI aims to develop an efficient on-chip analog coherent frequency converter to enhance internet connectivity and enable a quantum-ready infrastructure using advanced hybridization techniques.

€ 3.303.533
Mkb-innovati...

Geïntegreerde detector voor FBG sensorsystemen

Dit project ontwikkelt geavanceerde Photonic Integrated Circuits voor een nauwkeuriger glasfiber-optisch meetsysteem, gericht op het verhogen van meetcapaciteit en resolutie in hightech toepassingen.

€ 156.085