EXplainable ALgorithmic Tools

The project aims to develop a software library that provides explainable algorithms for task assignment, enhancing user understanding and trust in algorithmic solutions.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Deploying algorithmic solutions in real-world applications raises two challenges. First, we need easy-to-use and universal algorithms. Second, we need to guarantee that algorithmic solutions can be understood by people using them. We address the first of these challenges in the TUgbOAT project, which aims to deliver unified algorithmic tools. Here, we propose to develop tools that would address the second of these challenges.

Understanding Algorithmic Solutions

In many use scenarios, algorithms propose a solution to a human operator. The main challenge in such cases is to convince him to use the returned solution. Traditionally, we think of algorithms in a black-box manner, i.e., as a tool to find a good solution. We do not expect algorithms to give a human-understandable explanation of why this is the best solution, or what alternatives exist, or what the bottlenecks are.

Nevertheless, we humans still tend to ask these questions even if we understand the algorithms that are used. Currently, we lack good tools that could explain the results of optimization algorithms, e.g., for the assignment problem.

Need for Explainable Algorithms

For practitioners, like ourselves, that work together with companies to deploy algorithmic solutions in real-world cases, the need to provide explainable algorithms becomes immanent. Here we will test and implement results developed in TUgbOAT that can be used to complement the algorithms with human explanations.

Planned Developments

In particular, we plan to:

  • Enrich algorithms to give meaningful alternative solutions.
  • Apply Shapley value methods to determine key solution elements.
  • Work with perturbed inputs to create robust and more concise solutions.
  • Generate concise decision trees that would explain the steps taken by algorithms.

Project Goals

This project aims to deliver the base parts of a software library that would provide explainable algorithms. We plan to concentrate on the task assignment problem (i.e., matchings) where we already cooperate with companies.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-9-2023
Einddatum28-2-2025
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • MIM.AI SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIApenvoerder
  • IDEAS NCBR SP Z O.O.

Land(en)

Poland

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Challenges in Competitive Online Optimisation

This project aims to enhance decision-making under uncertainty by developing new online and learning-augmented algorithms, leveraging recent advancements in algorithm design and machine learning.

€ 1.499.828
ERC Consolid...

CertiFOX: Certified First-Order Model Expansion

This project aims to develop methodologies for ensuring 100% correctness in combinatorial optimization solutions by providing end-to-end proof logging from user specifications to solver outputs.

€ 1.999.928
ERC Starting...

Systematic and computer-aided performance certification for numerical optimization

The project aims to enhance theoretical foundations of numerical optimization to bridge the gap between theory and practice, developing robust algorithms and certification tools for complex applications.

€ 1.497.650
ERC Starting...

Algorithmic Contract Design

This project aims to establish algorithmic contract design (ACD) to create robust, personalized incentive schemes that enhance strategic actions and improve social efficiency in various economic applications.

€ 1.491.250
ERC Consolid...

Dynamic Selection and Configuration of Black-box Optimization Algorithms

The dynaBBO project aims to enhance black-box optimization by dynamically selecting and switching algorithms based on problem instances and stages, validated in bio-medicine and computational mechanics.

€ 1.999.975

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

ALGORITHM

Advanced Solutions Nederland onderzoekt de haalbaarheid van ALGORITHM, een AI-gestuurd systeem voor predictive maintenance in de industrie, met innovatieve sensoren en analysemethoden.

€ 20.000
Mkb-innovati...

Haalbaarheidsonderzoek online tool voor toepassing Targeted Maximum Likelihood Estimation (TMLE)

Researchable B.V. ontwikkelt een SaaS-oplossing die TMLE gebruikt om de onzichtbare laag van AI-berekeningen zichtbaar te maken via Explainable AI (XAI) voor betere inzicht in voorspellingen.

€ 20.000
Mkb-innovati...

eXplainable AI in Personalized Mental Healthcare

Dit project ontwikkelt een innovatief AI-platform dat gebruikers betrekt bij het verbeteren van algoritmen via feedbackloops, gericht op transparantie en betrouwbaarheid in de geestelijke gezondheidszorg.

€ 350.000
Mkb-innovati...

AI data engine voor vrachtwagentransport optimalisatie

Het project ontwikkelt een AI-data engine voor optimalisatie van communicatie en planning in vrachtwagentransport, gericht op meerdere sectoren.

€ 274.750
Mkb-innovati...

Ontwikkeling AI gebaseerd locatie dataplatform

Ontwikkeling van een innovatief AI-gestuurd product voor beeldanalyse en datacollectie ter vervanging van handmatige processen, met potentieel voor nieuwe diensten en concurrentievoordeel.

€ 199.000