Electrode assembly from floating nanowires for sustainable next generation batteries
ELECTROFLOAT aims to develop a solvent-free method for producing high-capacity silicon anodes for lithium-ion batteries, enhancing energy density and enabling pilot-scale manufacturing by 2030.
Projectdetails
Introduction
It is estimated that Europe needs an installed capacity for lithium-ion battery production of 300 GWh/year by 2030. By then, the battery market for electric vehicles alone will be worth $116 billion annually.
Technical Challenges
Amongst many technical challenges in this transition is to develop cost-effective and environmentally sustainable processes to manufacture high silicon (Si) content anodes for the next generation LIBs (3b and 4a).
Advantages of Silicon
Si is more abundant than graphite and can enable higher power batteries with thinner electrodes. Additionally, it can extend the range of EVs by increasing the energy density of the next generation of LIB cells by over 50%.
Proposed Method
ELECTROFLOAT proposes a new method to produce high capacity lithium-ion battery anodes made of nanostructured silicon fabrics with up to 100 w.t% Si content. This method eliminates all solvents, polymers, and mixing steps from anode manufacture.
Project Activities
This project comprises a set of selected R&D activities in key areas to reach TRL7 and start pilot-plant scale-up, focused on:
- De-risking the manufacturing process.
- Application of strategies to mitigate capacity fading and increase electrochemical performance under operational conditions.
- Designing a scale-up roadmap to 1 GWh/a and carrying out a techno-economic analysis to determine projected manufacturing costs and establish an adequate validation-driven scale-up strategy.
Non-Technical Activities
Non-technical activities will be conducted by an Industrialisation Development Team consisting of:
- The Principal Investigator (PI)
- Two external industrialisation advisors
- IMDEAs Technology Transfer officer
- The CEO of Floatech, the newly created spin-off company pursuing commercialization of this technology.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 30-9-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FUNDACION IMDEA MATERIALESpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Sustainable Solid State Sodium Batteries4SBATT aims to develop sustainable solid-state Na-based batteries with enhanced energy density and safety, leveraging advanced materials science and engineering techniques. | ERC Starting... | € 1.813.373 | 2022 | Details |
CELLulose nanocomposite separators for the nEXt generation of smart batteriesEXCELL aims to develop sustainable battery separators from 100% natural cellulose nanocomposites to enhance recyclability and performance, attracting market interest in eco-friendly cell components. | ERC Proof of... | € 150.000 | 2023 | Details |
Functionalized Graphene Based Electrode Material for Lithium Sulfur BatteriesThe FunGraB project aims to develop a cost-effective, sustainable lithium-sulfur battery electrode with enhanced stability and performance through a novel one-step manufacturing process. | ERC Proof of... | € 150.000 | 2022 | Details |
Multi-metal anode: Towards safe and energy dense batteriesMULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities. | ERC Consolid... | € 1.889.561 | 2023 | Details |
Deconstructing the Electrode-Electrolyte Interface by Novel NMR MethodologyThis project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems. | ERC Consolid... | € 2.228.750 | 2025 | Details |
Sustainable Solid State Sodium Batteries
4SBATT aims to develop sustainable solid-state Na-based batteries with enhanced energy density and safety, leveraging advanced materials science and engineering techniques.
CELLulose nanocomposite separators for the nEXt generation of smart batteries
EXCELL aims to develop sustainable battery separators from 100% natural cellulose nanocomposites to enhance recyclability and performance, attracting market interest in eco-friendly cell components.
Functionalized Graphene Based Electrode Material for Lithium Sulfur Batteries
The FunGraB project aims to develop a cost-effective, sustainable lithium-sulfur battery electrode with enhanced stability and performance through a novel one-step manufacturing process.
Multi-metal anode: Towards safe and energy dense batteries
MULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities.
Deconstructing the Electrode-Electrolyte Interface by Novel NMR Methodology
This project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Next generation battery productionDit project ontwikkelt een stabiele silicium-anode voor lithium-ion batterijen met verbeterde prestaties en duurzaamheid, door innovatieve sALD-technologie en industriële schaalproductie te combineren. | Mkb-innovati... | € 350.000 | 2023 | Details |
Cheaper, better batteries from common, safe and available raw materialsBroadBit aims to revolutionize the battery industry with new sodium-based technology and a clean production process to enable the transition to renewable energy and reduce carbon emissions. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Upscaling Vianode innovative synthetic graphite production technology for a responsible electrification of EuropeProject ELAN aims to produce premium synthetic graphite anode materials for European battery manufacturers using innovative, energy-efficient technology, significantly reducing greenhouse gas emissions and boosting local economies. | Innovation F... | € 90.000.000 | 2024 | Details |
Low CO2 Footprint Battery Foil for Li-ion Battery Production for Energy StorageGranges Finspang aims to become a sustainability leader in the European battery foil market by producing low CO2 aluminum foil using innovative technologies and recycled materials. | Innovation F... | € 2.676.706 | 2021 | Details |
Demonstratie Gen3 Silicium Anode RollerLeydenJar Technologies demonstreert en valideert een innovatieve Gen3 silicium anode productie-installatie om de energiedichtheid van batterijen met 70% te verhogen en CO2-uitstoot met 85% te verlagen. | Demonstratie... | € 5.582.720 | 2021 | Details |
Next generation battery production
Dit project ontwikkelt een stabiele silicium-anode voor lithium-ion batterijen met verbeterde prestaties en duurzaamheid, door innovatieve sALD-technologie en industriële schaalproductie te combineren.
Cheaper, better batteries from common, safe and available raw materials
BroadBit aims to revolutionize the battery industry with new sodium-based technology and a clean production process to enable the transition to renewable energy and reduce carbon emissions.
Upscaling Vianode innovative synthetic graphite production technology for a responsible electrification of Europe
Project ELAN aims to produce premium synthetic graphite anode materials for European battery manufacturers using innovative, energy-efficient technology, significantly reducing greenhouse gas emissions and boosting local economies.
Low CO2 Footprint Battery Foil for Li-ion Battery Production for Energy Storage
Granges Finspang aims to become a sustainability leader in the European battery foil market by producing low CO2 aluminum foil using innovative technologies and recycled materials.
Demonstratie Gen3 Silicium Anode Roller
LeydenJar Technologies demonstreert en valideert een innovatieve Gen3 silicium anode productie-installatie om de energiedichtheid van batterijen met 70% te verhogen en CO2-uitstoot met 85% te verlagen.