Colloidal Indium Arsenide quantum dots as short-wave infrared single photon emitters
MOONSHOT aims to develop RoHS-compliant, highly emissive InAs colloidal quantum dots for single-photon sources in the SWIR range, addressing limitations of current epitaxial technologies.
Projectdetails
Introduction
MOONSHOT aims at developing a novel single-photon emitting material that operates in the telecommunication wavelength range (1300-1600 nm, O- and C-bands) and is compliant with the “Restriction of Hazardous Substances in Electrical and Electronic Equipment” (RoHS).
Motivation
The main motivation for such an objective is that single-photon sources based on epitaxial quantum dots (QDs) are now a mature technology available on the market that is outperforming laser cooled atoms or spontaneous parametric down conversion via nonlinear crystals.
Challenges with Epitaxial QDs
Yet, three major issues afflict epitaxial QDs:
- The epitaxial approach presents drawbacks in terms of limited throughput and CMOS incompatibility.
- Often, the emission wavelength of epitaxial QDs for single-photon generation is limited to less than 1000 nm.
- Single-photon sources based on this class of QDs require low-temperature operation (T ≈ 4K).
Advantages of Colloidal QDs
Colloidal QDs present similar light-emission properties to their epitaxial counterparts and they can tackle most of the drawbacks of the latter. For example:
- Solution processing enables controlled placement of QDs on-chip.
- Very high throughput preparation via wet-chemistry approaches.
- Potential for operation beyond cryogenic temperatures.
Current Limitations
Nonetheless, state-of-the-art colloidal QDs with shortwave infrared emission (SWIR, 750-1600 nm) contain either lead or mercury, which are severely restricted by the RoHS. Indium arsenide (InAs) QDs are among the few SWIR-emitting RoHS-compliant materials; yet only a limited number of synthetic approaches lead to emissive QDs.
Project Focus
MOONSHOT will focus on developing highly emissive and blinking-free InAs colloidal QDs based on a synthetic route employing commercially available precursors.
Strategy
MOONSHOT adopts a high-risk strategy to realize a new technology in the field of quantum light sources with an immediate outcome in the form of optimized single-photon SWIR emitting QDs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2024 |
Einddatum | 30-11-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Short-wave Infrared Light emitters based on Colloidal Quantum Dot TechnologyThe SWIRL project aims to develop low-cost, high-performance SWIR optical sources using colloidal quantum dot technology for applications in automotive imaging and health monitoring. | ERC Proof of... | € 150.000 | 2022 | Details |
Nanomaterials for Infrared Silicon PhotonicsNOMISS aims to develop cost-effective, small-footprint printable IR opto-electronics using non-restricted colloidal quantum dots for enhanced light emission and integration with photonic circuits. | ERC Starting... | € 1.667.410 | 2022 | Details |
Dots-in-NANOWires by near-field illumination: novel single-photon sources for HYbRid quantum photonic circuitsThe NANOWHYR project aims to develop a novel method for integrating site-controlled quantum dots in nanowires with photonic cavities, enabling efficient single photon sources for silicon photonic circuits. | ERC Starting... | € 1.499.393 | 2022 | Details |
Photonic Quantum Technologies with Strain-Free Artificial AtomsThis project aims to develop a scalable platform using gallium arsenide quantum dots to produce highly entangled photon states, enhancing quantum communication and simulation technologies. | ERC Starting... | € 1.500.000 | 2023 | Details |
Engineering of Superfluorescent Nanocrystal SolidsPROMETHEUS aims to engineer light-emitting colloidal nanocrystal solids for enhanced cooperative emission, advancing quantum technologies and materials science through innovative synthesis and spectroscopy techniques. | ERC Starting... | € 1.875.938 | 2023 | Details |
Short-wave Infrared Light emitters based on Colloidal Quantum Dot Technology
The SWIRL project aims to develop low-cost, high-performance SWIR optical sources using colloidal quantum dot technology for applications in automotive imaging and health monitoring.
Nanomaterials for Infrared Silicon Photonics
NOMISS aims to develop cost-effective, small-footprint printable IR opto-electronics using non-restricted colloidal quantum dots for enhanced light emission and integration with photonic circuits.
Dots-in-NANOWires by near-field illumination: novel single-photon sources for HYbRid quantum photonic circuits
The NANOWHYR project aims to develop a novel method for integrating site-controlled quantum dots in nanowires with photonic cavities, enabling efficient single photon sources for silicon photonic circuits.
Photonic Quantum Technologies with Strain-Free Artificial Atoms
This project aims to develop a scalable platform using gallium arsenide quantum dots to produce highly entangled photon states, enhancing quantum communication and simulation technologies.
Engineering of Superfluorescent Nanocrystal Solids
PROMETHEUS aims to engineer light-emitting colloidal nanocrystal solids for enhanced cooperative emission, advancing quantum technologies and materials science through innovative synthesis and spectroscopy techniques.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantum Dot technology application in solar cellsQDI Systems B.V. onderzoekt de technische en economische haalbaarheid van het toepassen van Quantum Dots in zonnecellen om de efficiëntie van energieomzetting te verbeteren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Single-Photon Light Sources for Quantum TechnologiesQTOOL aims to fine-tune and demonstrate key single-photon products to enhance research in Photonic Quantum Technologies, making it faster, cheaper, and more effective. | EIC Accelerator | € 2.490.742 | 2022 | Details |
moleculAR maTerials for on-chip intEgrated quantuM lIght sourceSARTEMIS aims to develop versatile metallorganic photon sources for quantum technologies, enhancing performance and integration through advanced synthesis and nano-photonics engineering. | EIC Pathfinder | € 3.247.100 | 2023 | Details |
Highly efficient, heavy metal-free color conversion ink technology for microLED applicationsQustomDot aims to lead the microLED display market by providing a heavy metal-free quantum dot solution that meets industry demands for stability and optical performance. | EIC Accelerator | € 2.499.894 | 2024 | Details |
Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT NetworksQOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets. | EIC Pathfinder | € 3.481.857 | 2025 | Details |
Quantum Dot technology application in solar cells
QDI Systems B.V. onderzoekt de technische en economische haalbaarheid van het toepassen van Quantum Dots in zonnecellen om de efficiëntie van energieomzetting te verbeteren.
Single-Photon Light Sources for Quantum Technologies
QTOOL aims to fine-tune and demonstrate key single-photon products to enhance research in Photonic Quantum Technologies, making it faster, cheaper, and more effective.
moleculAR maTerials for on-chip intEgrated quantuM lIght sourceS
ARTEMIS aims to develop versatile metallorganic photon sources for quantum technologies, enhancing performance and integration through advanced synthesis and nano-photonics engineering.
Highly efficient, heavy metal-free color conversion ink technology for microLED applications
QustomDot aims to lead the microLED display market by providing a heavy metal-free quantum dot solution that meets industry demands for stability and optical performance.
Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT Networks
QOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets.