An automated platform for the large-scale production of miniaturized neuromuscular organoids

The project aims to automate and scale the production of complex neuromuscular organoids for high-throughput drug screening to advance therapies for neuromuscular diseases.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Organoids have been developed as advanced 3D cell culture systems that resemble aspects of the in vivo tissues and provide an alternative to study the mechanisms of human disease and identify novel treatments.

Recent Developments

The last years have witnessed tremendous developments in the field of stem cell and organoid research, but the full potential of these systems remains to be exploited.

Challenges in Organoid Research

Two major challenges facing the organoid field are:

  1. Reproducibility
  2. Scalability

The manual production of organoids is a labor-intensive and expensive process. The development of cost-effective, fast, and reliable methods is a prerequisite for transferring organoid technologies to the industry for high-throughput approaches.

Novel Neuromuscular Organoid Model

We have recently established a novel complex human neuromuscular organoid (NMO) model from human pluripotent stem cell-derived neuromesodermal progenitors. NMOs self-organize into spinal cord neurons and skeletal muscle compartments that contract by forming functional neuromuscular junctions.

ERC Consolidator Grant

The ERC consolidator grant “GPSorganoids” focuses on:

  • The generation of position-specific (GPS) NMOs representing distinct spinal cord segments
  • The use of such NMO models to study the selective vulnerability of specific spinal cord neurons to neuromuscular diseases like amyotrophic lateral sclerosis and spinal muscular atrophy.

PoC Grant Objectives

The PoC grant goes beyond the scope of our ERC consolidator grant and focuses on the commercialization of the NMO model through the establishment of an automated, reliable, and high-throughput production line that could apply to industry settings.

Ultimate Goal

Our ultimate goal is to establish NMOs as a leading model in the market for high-throughput drug screening approaches and accelerate the development of novel therapies for neuromuscular disorders.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-7-2023
Einddatum31-12-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)penvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Human skeletal muscle platform for disease modelling and high-throughput drug screening

Developing a high-throughput in vitro platform with biomimetic skeletal muscle analogues to model neuromuscular disorders for effective drug screening and therapy validation.

€ 150.000
ERC Advanced...

Reprogramming of somatic cells into organOids: patient-centred neurodevelopmental disease modelling from nascent induced pluripotency

The project aims to develop a robust method for generating human brain organoids from patients with Fragile X Syndrome to explore neurodevelopmental phenotypes and inform targeted therapies.

€ 2.500.000
ERC Proof of...

High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery

The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.

€ 150.000
ERC Starting...

Engineering human cortical brain organoid’s connections to restore brain functions

This project aims to restore functional neuronal networks in cortical brain lesions using 3D bioprinted human-specific hydrogels and cortical brain organoids for innovative therapeutic solutions.

€ 1.500.000
ERC Proof of...

Live imaging module for organoids

The LiveOrg project aims to develop and disseminate a non-invasive, high-resolution imaging system for organoids to enhance quality control and therapeutic evaluation across multiple medical fields.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Opto-Electronic Neural Connectoid Model Implemented for Neurodegenerative Disease

The project aims to develop a novel human brain-organoid model, called connectoids, to replace animal testing for Parkinson's disease, enhancing therapy monitoring and reducing societal burdens.

€ 2.992.203
EIC Pathfinder

Supervised morphogenesis in gastruloids

This project aims to develop advanced gastruloid technology to create larger, vascularized organ models that better mimic human physiology, reducing reliance on animal experiments.

€ 3.337.725
EIC Pathfinder

Revolutionary high-resolution human 3D brain organoid platform integrating AI-based analytics

The 3D-BrAIn project aims to develop a personalized bio-digital twin of the human brain using advanced organoid cultures and machine learning to enhance precision medicine for CNS disorders.

€ 1.998.347
EIC Pathfinder

High-throughput ultrasound-based volumetric 3D printing for tissue engineering

SONOCRAFT aims to revolutionize myocardial cell construct bioprinting by combining rapid volumetric printing with ultrasonic manipulation to create functional cardiac models for drug testing and disease research.

€ 2.999.625
Mkb-innovati...

Humane mini-breinen voor R&D-toepassingen

Het project ontwikkelt een applicatie voor het kweken en analyseren van humane mini-breinen, ter vermindering van dierproeven.

€ 744.000