Tuning TDP-43 self-assembly to understand physiological function and dysfunction
The TDP-Assembly project aims to investigate the self-assembly behavior of TDP-43 RNA-binding proteins to understand their role in neurodegeneration and develop potential therapies targeting these processes.
Projectdetails
Introduction
Neurodegenerative disorders are an enormous societal burden, and we lack therapies that target these diseases at their origins. To develop therapies, we need to understand what goes wrong at the molecular level.
Key Discoveries
I uncovered key mechanisms that cause RNA-binding proteins, such as TDP-43, to dysfunction and drive neurodegenerative processes. I discovered that RNA-binding proteins self-assemble into ribonucleoprotein granules that are the likely origins of RNA-binding protein aggregates.
Recent Findings
More recently, my group and I revealed aberrant phase transitions of condensed RNA-binding proteins occurring in disease and identified fundamental mechanisms by which such phase transitions are regulated in cells.
Research Goals
In TDP-Assembly, I now want to find out why these proteins exhibit a self-assembly behavior that apparently risks pathological aggregation. My hypothesis is that self-assembly is essential for their many functions in gene regulation, and that different types of self-assemblies, e.g., small clusters or fluid or solid condensates, mediate different functions in cells.
Methodology
Using TDP-43 as a paradigm, I will test this hypothesis to ultimately understand the molecular basis of RNA-binding protein dysfunction in neurodegeneration.
- I will use synthetic biology approaches to rationally tune self-assembly of TDP-43 in cells.
- I will study how altered TDP-43 self-assembly affects its known molecular functions, i.e., regulation of transcription, alternative splicing, and translation.
- Transcriptome and proteome analyses will draw a systems biology map of altered TDP-43 self-assembly and might lead us to novel functions of TDP-43 self-assembly.
Addressing Disease Mechanisms
Ultimately, I will address how TDP-43's self-assembly, and thus its functions, are altered by disease-linked mutations in neuronal cells.
Conclusion
TDP-Assembly will forge a new understanding of the functional and pathological relevance of RNA-binding protein self-assembly and might inspire new therapies that target self-assembly processes.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.989 |
Totale projectbegroting | € 1.999.989 |
Tijdlijn
Startdatum | 1-7-2024 |
Einddatum | 30-6-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- JOHANNES GUTENBERG-UNIVERSITAT MAINZpenvoerder
- INSTITUT FUR MOLEKULARE BIOLOGIE GGMBH
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deciphering co-translational protein folding, assembly and quality control pathways, in health and diseaseThis project aims to elucidate co-translational protein folding and degradation mechanisms to understand misfolding diseases and improve therapeutic strategies. | ERC Starting... | € 1.412.500 | 2022 | Details |
Decipher how mRNAs are captured at specific subcellular locations to support local translation in neuronsRNA.ORG aims to uncover the molecular mechanisms of mRNA localization and translation in neurons to understand their role in neuronal function and dysregulation in ALS. | ERC Starting... | € 1.499.140 | 2025 | Details |
Do T cells link loss and gain-of-function mechanism in C9orf72 ALS/FTD?This project investigates the role of T cells in the pathogenesis of ALS and FTD due to C9orf72 mutations, aiming to uncover mechanisms for new biomarkers and therapeutic targets. | ERC Starting... | € 1.498.610 | 2024 | Details |
Deciphering Neurodegenerative Disease with fast 3D imaging & functional nanoscopyThis project aims to investigate the biophysical mechanisms of protein aggregation in Huntington's Disease using advanced imaging techniques to enhance understanding of neurodegenerative processes. | ERC Starting... | € 1.500.000 | 2024 | Details |
Mechanisms of co-translational assembly of multi-protein complexesThis project aims to uncover the mechanisms of co-translational protein complex assembly using advanced techniques to enhance understanding of protein biogenesis and its implications for health and disease. | ERC Synergy ... | € 9.458.525 | 2023 | Details |
Deciphering co-translational protein folding, assembly and quality control pathways, in health and disease
This project aims to elucidate co-translational protein folding and degradation mechanisms to understand misfolding diseases and improve therapeutic strategies.
Decipher how mRNAs are captured at specific subcellular locations to support local translation in neurons
RNA.ORG aims to uncover the molecular mechanisms of mRNA localization and translation in neurons to understand their role in neuronal function and dysregulation in ALS.
Do T cells link loss and gain-of-function mechanism in C9orf72 ALS/FTD?
This project investigates the role of T cells in the pathogenesis of ALS and FTD due to C9orf72 mutations, aiming to uncover mechanisms for new biomarkers and therapeutic targets.
Deciphering Neurodegenerative Disease with fast 3D imaging & functional nanoscopy
This project aims to investigate the biophysical mechanisms of protein aggregation in Huntington's Disease using advanced imaging techniques to enhance understanding of neurodegenerative processes.
Mechanisms of co-translational assembly of multi-protein complexes
This project aims to uncover the mechanisms of co-translational protein complex assembly using advanced techniques to enhance understanding of protein biogenesis and its implications for health and disease.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identificationThis project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery. | EIC Pathfinder | € 3.000.418 | 2022 | Details |
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identification
This project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery.