Silicate alteration in marine sediments: kinetics, pathway, and dependency
This project aims to quantify marine silicate alteration rates through innovative lab experiments and field observations to enhance understanding of its role in carbon cycling and Earth's climate response.
Projectdetails
Introduction
Over its long geological history, the overall habitability of Earth has been governed by the chemical alteration of silicate minerals, a reaction that buffers pCO2 and climate. While terrestrial silicate weathering is widely appreciated, marine silicate weathering and reverse weathering (or marine silicate alteration, MSiA, altogether) has long been considered insignificant in the big picture.
Recent Findings
This paradigm is challenged by recent work that suggests reverse weathering, as an oceanic Si sink, could be three times higher than previously thought. The latest estimates of marine silicate weathering show its CO2-fixing capacity could be 82% of that of its terrestrial counterpart.
Uncertainties and Gaps
Though potentially significant, these estimates are associated with large uncertainties and untested assumptions. In particular, information about the exact chemical pathway of MSiA, kinetics, and the environmental dependency is missing.
Research Objectives
To fill these gaps, I will provide the first comprehensive assessment of MSiA by quantifying its rates through both laboratory experiments and field observations.
Laboratory Experiments
While the former constrains how MSiA initiates, the latter represents the million-year quasi-steady state condition in nature. Reproducing the conditions for MSiA in the laboratory is undeniably challenging due to the required multi-year incubation under up to 340 times atmospheric pressure and near-frozen conditions, which I can reproduce with a novel apparatus.
Field Observations
Circulation of modified seawater with realistically slow flow will be maintained to derive MSiA rates through continuous fluid composition monitoring. Together with the rates estimated from field observations, I will evaluate the dependency of MSiA on environmental factors, such as the type/quality of silicates and organic matter.
Project Impact
The project will be transformative in our understanding of the coupling between Si and C cycles, and thus provide fundamental knowledge for predicting Earth responses to a likely hotter and wetter future.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.780 |
Totale projectbegroting | € 1.999.780 |
Tijdlijn
Startdatum | 1-7-2023 |
Einddatum | 30-6-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- STOCKHOLMS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deep-sea carbonates under pressure: mechanisms of dissolution and climate feedbacksThis five-year research project aims to understand deep-sea calcium carbonate dissolution to enhance carbon sequestration knowledge and improve climate change mitigation strategies. | ERC Starting... | € 2.278.467 | 2025 | Details |
Quantifying and controlling the mechanisms responsible for mineral behaviour: Dissolution, adsorption and crystal growthThe project aims to develop new instruments to understand and control organic molecule interactions with silicate minerals, enhancing CO2 mineralization and addressing climate change challenges. | ERC Advanced... | € 3.499.625 | 2022 | Details |
Mechanisms of gas-driven mineral weathering in a changing climateDryCO2 aims to understand gas-driven mineral weathering in the unsaturated zone to assess its role in climate evolution and optimize CO2 removal strategies amid changing climate conditions. | ERC Starting... | € 1.499.176 | 2022 | Details |
Provenance And tranSport PathwayS of mArine proxy-bearinG particlEsThis project aims to enhance the accuracy of paleoceanographic studies by assessing hydrodynamic impacts on marine sediments and correcting climate signal biases using advanced radiocarbon techniques. | ERC Starting... | € 1.499.766 | 2022 | Details |
High-resolution Boron and beyond Geologic reconstructions for carbon and climate processesHighBorG aims to clarify the relationship between climate, CO2, and Antarctic Ice Sheet dynamics across key geological periods to improve future sea level and temperature projections. | ERC Consolid... | € 1.999.925 | 2024 | Details |
Deep-sea carbonates under pressure: mechanisms of dissolution and climate feedbacks
This five-year research project aims to understand deep-sea calcium carbonate dissolution to enhance carbon sequestration knowledge and improve climate change mitigation strategies.
Quantifying and controlling the mechanisms responsible for mineral behaviour: Dissolution, adsorption and crystal growth
The project aims to develop new instruments to understand and control organic molecule interactions with silicate minerals, enhancing CO2 mineralization and addressing climate change challenges.
Mechanisms of gas-driven mineral weathering in a changing climate
DryCO2 aims to understand gas-driven mineral weathering in the unsaturated zone to assess its role in climate evolution and optimize CO2 removal strategies amid changing climate conditions.
Provenance And tranSport PathwayS of mArine proxy-bearinG particlEs
This project aims to enhance the accuracy of paleoceanographic studies by assessing hydrodynamic impacts on marine sediments and correcting climate signal biases using advanced radiocarbon techniques.
High-resolution Boron and beyond Geologic reconstructions for carbon and climate processes
HighBorG aims to clarify the relationship between climate, CO2, and Antarctic Ice Sheet dynamics across key geological periods to improve future sea level and temperature projections.