Nuclear Shapes of Heavy Atoms and Proton-Emitting nuclei

This project aims to enhance our understanding of atomic nuclei shapes through advanced laser and muonic x-ray spectroscopy techniques, achieving unprecedented precision in nuclear measurements.

Subsidie
€ 2.500.000
2023

Projectdetails

Introduction

By combining atomic, nuclear and particle physics techniques, I shall perform the experimental study of the shape of key atomic nuclei, to challenge our understanding of the nucleus. This combined effort will reach unprecedented sensitivity, precision and accuracy to determine the shape observables (charge radii, electric quadrupole moments) and compare them to state-of-the-art nuclear models (spherical shell model, density functional theory, ab initio models based on chiral effective field theory).

Techniques and Facilities

This programme will combine different techniques at various accelerator facilities where I employ and develop unique approaches and instrumentation:

  1. CERN ISOLDE (Geneva, CH)
    High-resolution laser resonance ionization spectroscopy will be performed with the Resonant Ionization Laser Ion Source (RILIS) combined with the Perpendicularly-Illuminated Laser Ion Source and Trap (PI-LIST) to study the onset of octupole deformation and proceed towards the proton drip line with selected nuclei.

  2. GANIL SPIRAL2 (Caen, FR)
    High-sensitivity laser resonance ionization spectroscopy will be performed in the supersonic gas jet of the gas cell at the focal plane of the Super Separator Spectrometer (S3) to study the most exotic isotopes not available at ISOLDE, reaching proton-unbound nuclei at the drip line.

  3. PSI (Villigen, CH)
    Muonic x-ray spectroscopy will be performed on key isotopes to measure absolute charge radii that are crucial to complete the analysis of the NSHAPE isotopes. This work will combine a strong experimental development in target production for muX, in the detector array, and in the analysis tools.

Unique Programme

Combining the high-resolution laser spectroscopy and the high accuracy from μx-ray spectroscopy is a unique programme that only NSHAPE can fully realize, providing radii and moments with unprecedented accuracy. From those results, I shall obtain a deeper understanding of the strong interaction at work in the nuclear medium.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.500.000
Totale projectbegroting€ 2.500.000

Tijdlijn

Startdatum1-4-2023
Einddatum31-3-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • KATHOLIEKE UNIVERSITEIT LEUVENpenvoerder

Land(en)

Belgium

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

PREcision Studies with Optically pumped Beams of Exotic Nuclei

This project aims to accurately determine the distribution of magnetization and neutrons in unstable nuclei using advanced Nuclear Magnetic Resonance techniques at CERN, enhancing nuclear structure studies and related physics.

€ 2.184.375
ERC Starting...

Ab initio pathway to deformed nuclei

The project aims to develop new technologies for studying deformed nuclei using chiral effective field theory, enhancing predictions of nuclear shapes and uncertainties in ab initio calculations.

€ 1.497.360
ERC Starting...

antiProtonic Atom X-ray spectroscopy

This project aims to test strong-field quantum electrodynamics using x-ray spectroscopy of antiprotonic atoms, leveraging advanced technologies for precision measurements to uncover new physics.

€ 2.499.613
ERC Advanced...

From conformal symmetries and integrability to the Electron-Ion Collider

This project aims to enhance precision predictions for deep-inelastic scattering at the Electron-Ion-Collider by advancing QCD perturbation theory using conformal symmetry and integrability.

€ 2.264.563
ERC Consolid...

Opening new frontiers in multi-scale evolution of collider events: a dual pathway to precision

The JANUS project aims to enhance theoretical methods for accurately modeling multi-scale particle interactions at colliders, improving predictions for Higgs and jet physics.

€ 1.993.125