Mineralization within macromolecular condensates – the chemical playground of living cells
This project aims to develop dense-phase mineralization to mimic nature's crystallization processes, enhancing bioinspired mineral properties through controlled polymer-ion interactions.
Projectdetails
Introduction
Organisms form crystalline materials with superior structural and mechanical properties. This arises from the ability of functional macromolecules to create intricate architectures via a multi-step crystallization process. Current approaches to engineer bioinspired minerals focus on interactions between macromolecules and minerals in dilute aqueous environments, rarely considering the emergent properties of macromolecular condensates.
Background
However, we and others showed that macromolecular crowding is intimately associated with biomineral formation in vivo. In this project, we will develop a new type of chemistry—dense-phase mineralization—to unlock the pathways mastered by nature.
Hypothesis
Our hypothesis is that weak polymer-ion interactions within dense phases tune the chemical landscape, controlling the crystallization process and the properties of its products. Remarkably, our preliminary results using the calcium carbonate system show that molar-range polymer concentrations, four orders of magnitude denser than in previous works, result in intricate crystals with life-like properties.
Methodology
We will investigate dense-phase mineralization in both synthetic and living systems, relying on our unique expertise in cryo-electron and X-ray microscopies of hydrated biological samples.
Aim 1
- We will grow crystals in a dense polymer phase.
- We will use the crowded environment to sculpt architectural motives.
Aim 2
- We will investigate the challenging phase separation regime.
- We will transform inorganic condensates into transient precursors for mineralization.
Aim 3
- We will elucidate how liquid-liquid phase separation evolved by mineralizing organisms.
- We will regulate inorganic condensate formation.
Conclusion
This project will open an uncharted chemical landscape to form and control bioinspired minerals. The outcome will be a toolbox for process design that allows us to optimize material properties—the highest gain we can ask for in bioinspired mineralization.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- WEIZMANN INSTITUTE OF SCIENCEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Unraveling the molecular mechanisms underlying intracellular crystal formationThis project aims to understand the mechanisms of intracellular crystal formation in iridosomes using zebrafish, to advance knowledge for biomaterials and therapeutics against crystallization pathologies. | ERC Starting... | € 1.500.000 | 2022 | Details |
Quantifying and controlling the mechanisms responsible for mineral behaviour: Dissolution, adsorption and crystal growthThe project aims to develop new instruments to understand and control organic molecule interactions with silicate minerals, enhancing CO2 mineralization and addressing climate change challenges. | ERC Advanced... | € 3.499.625 | 2022 | Details |
Designer Condensates for Regulation of Catalytic ProcessesDevelop synthetic biomolecular condensates with tunable properties from peptide libraries to enhance reaction regulation and sustainable drug synthesis in aqueous environments. | ERC Starting... | € 1.498.750 | 2024 | Details |
Integrating non-living and living matter via protocellular materials (PCMs) design and synthetic constructionThis project aims to create adaptive protocellular materials that mimic living tissues and interact with cells, advancing synthetic biology and tissue engineering through innovative assembly techniques. | ERC Starting... | € 2.097.713 | 2023 | Details |
Bringing Nanospace to Life by Adapting Pore Environments to Chemical ComplexityLIVINGPORE aims to develop synthetic porous materials with programmable pore environments for enhanced structural and functional responses, mimicking biological systems for innovative applications. | ERC Consolid... | € 1.998.974 | 2023 | Details |
Unraveling the molecular mechanisms underlying intracellular crystal formation
This project aims to understand the mechanisms of intracellular crystal formation in iridosomes using zebrafish, to advance knowledge for biomaterials and therapeutics against crystallization pathologies.
Quantifying and controlling the mechanisms responsible for mineral behaviour: Dissolution, adsorption and crystal growth
The project aims to develop new instruments to understand and control organic molecule interactions with silicate minerals, enhancing CO2 mineralization and addressing climate change challenges.
Designer Condensates for Regulation of Catalytic Processes
Develop synthetic biomolecular condensates with tunable properties from peptide libraries to enhance reaction regulation and sustainable drug synthesis in aqueous environments.
Integrating non-living and living matter via protocellular materials (PCMs) design and synthetic construction
This project aims to create adaptive protocellular materials that mimic living tissues and interact with cells, advancing synthetic biology and tissue engineering through innovative assembly techniques.
Bringing Nanospace to Life by Adapting Pore Environments to Chemical Complexity
LIVINGPORE aims to develop synthetic porous materials with programmable pore environments for enhanced structural and functional responses, mimicking biological systems for innovative applications.