Information Frictions in Hiring Decisions

INASHI aims to identify information imperfections in the labor market and test solutions to improve hiring processes, enhancing employment outcomes in Austria, France, and Sweden.

Subsidie
€ 1.746.614
2023

Projectdetails

Introduction

Over the last decades, the internet has sped up and increased interactions between employers and workers, but aggregate unemployment does not seem to have been much impacted by this revolution. This could be because information frictions are not a first-order contributor to unemployment, or because current tools and institutions do not enable truthful and effective communication between firms and workers.

Problem Statement

Employers, who are often on the short side of the market, find it difficult and costly to screen potential employees.

Project Objectives

INASHI aims to provide:

  1. Theoretical frameworks
  2. New empirical evidence about:
    • The remaining information imperfections in the labour market
    • The importance of these imperfections to aggregate unemployment and unemployment of the most vulnerable segments of the labour market
    • Solutions to improve the recruiting process

Methodology

INASHI will combine:

  • Novel data on how firms search for workers on large online job boards
  • Administrative data on vacancies
  • Matched employer-employee data

It will also leverage a series of randomized controlled trials to test how the provision of new information to employers, whether about candidates or about features of the market, helps them make better hiring decisions. This is expected to lead to:

  • Higher aggregate hiring
  • Higher-quality matches

Scope of Study

Three countries will be studied: Austria, France, and Sweden. This approach will ensure that INASHI provides evidence valid in a variety of contexts.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.746.614
Totale projectbegroting€ 1.746.614

Tijdlijn

Startdatum1-10-2023
Einddatum30-9-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • GROUPE DES ECOLES NATIONALES D ECONOMIE ET STATISTIQUEpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

New Direct Empirical Evidence on Wage Setting

The project aims to enhance understanding of wage setting and inequality through empirical studies of collective bargaining in France and the US, using surveys and experiments to inform policy.

€ 1.721.563
ERC Advanced...

Information Economics for Science

The project develops tools in organizational economics to enhance scientific decision-making and optimize funding incentives amidst uncertainty in research.

€ 1.461.050
ERC Starting...

Causes and Consequences of Labor Market Flexibility

LABFLEX aims to investigate the causes and impacts of labor market flexibility on wage inequality and job contracts by linking register data with experimental evidence and job vacancy analysis.

€ 1.500.000
ERC Consolid...

How Mirror-Image Effects Shape Online Labour Markets

This project aims to develop a new institutional theory on 'mirror-image specialization' in the gig economy, analyzing how education and labor markets influence online gig work dynamics.

€ 1.992.062
ERC Starting...

Skills Markets: Marriage and Labor

SkiM2Lab aims to develop multidimensional matching models to analyze the interplay between labor and marriage markets, enhancing understanding of skill distribution and its impact on wages and inequality.

€ 1.313.131

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

“flexibilisering flexwerk-matching.”

Het project onderzoekt de haalbaarheid van A.I.-ondersteunde systeemkoppeling voor efficiëntere matchmaking in de uitzendbranche, met als doel burn-outs te verminderen en maatschappelijke zorgkosten te verlagen.

€ 19.200
Mkb-innovati...

AI Staffing Assistant (AISA)

Acheron ontwikkelt AISA om het wervingsproces voor technische functies te verbeteren met AI-technologie en de efficiëntie te verhogen.

€ 19.740
Mkb-innovati...

Bias Score for Recruitment software

BCR ontwikkelt een tool om bias in recruitmentsoftware te identificeren en te verminderen, waardoor inclusiviteit en de beste kandidaten worden bevorderd.

€ 20.000
Mkb-innovati...

Generiek linguïstisch AI-voorspellingsmodel voor eerlijke HR-besluitvorming

Seedlink ontwikkelt een generiek AI-voorspellingsmodel voor HR-besluitvorming, gericht op het verbeteren van nauwkeurigheid en eerlijkheid zonder specifieke klantdata, toegankelijk voor kleinere bedrijven.

€ 20.000
Mkb-innovati...

Advanced analytics interventie-platform voor een langdurig inzetbare beroepsbevolking.

Whayle onderzoekt de haalbaarheid van een analytics platform voor duurzame arbeidsparticipatie om verzuim te verminderen en gepersonaliseerde interventies te bieden.

€ 20.000