HUNTING GHOST NEURONS IN THE NEUROENDOCRINE HYPOTHALAMUS
The Ghostbuster project aims to identify and understand 'Ghost' neurons in the hypothalamus that exhibit plasticity in adult life, potentially revolutionizing treatments for neuroendocrine disorders.
Projectdetails
Introduction
The hypothalamus contains heterogeneous neurons that dictate behaviours and physiological functions through cross-talk mechanisms with peripheral hormones. Neuronal diversity is the key to enabling hypothalamic functions and, according to the neuroscience dogma, is mainly preset during embryonic life.
Research Question
But what if this model is incorrect? Can neuronal heterogeneity be plastically modulated throughout adult life as well? Here, based on my published work and solid preliminary results, I propose that special 'Ghost' neurons in the hypothalamus display plastic mechanisms of cell-identity reprogramming to accommodate neuroendocrine functions in adult life under physiological conditions.
Implications of Identity Plasticity
Such identity plasticity can become maladaptive and contribute to neuroendocrine disorders such as obesity. My central hypothesis is that atypical 'Ghost' neurons are hidden within mature populations of neuroendocrine brain neurons.
Project Overview
The Ghostbuster project will hunt down these brain cells and uncover their role in physiology and metabolic disease. A multidisciplinary approach will be used toward this goal, uniting:
- Lineage tracing strategies
- Nutritional interventions
- Single-cell profiling of hypothalamic neurons
- Bioinformatic analyses
- Viral-based tools for targeting Ghost cell-related genes
Methodology
These strategies will be combined with behavioural, metabolic, and hormonal assessments of mice models of Ghost neuron loss or gain of function.
Expected Outcomes
The project will overturn the dogma that post-mitotic neurons have negligible cell-reprogramming capacity and revolutionise our understanding of how brain functions are plastically regulated throughout life.
Conclusion
We will shed light on key molecular targets that allow the reprogramming of neuronal functional identity for therapeutic use and provide a novel framework for understanding the fundamental biological mechanisms that cause neuroendocrine disorders such as obesity, infertility, and beyond.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deconstructing Hypothalamic Neurocircuitry Architecture and Function in Metabolic Control during Health and DiseaseThis project aims to map hypothalamic neuron types and circuits involved in body weight regulation to enhance understanding and treatment of obesity and related metabolic diseases. | ERC Advanced... | € 2.500.000 | 2025 | Details |
Decoding the Wiring of Integrative Neurocircuits in Metabolic ControlThis project aims to map and characterize neurocircuits in the brain that regulate metabolism by integrating hormonal and nutrient signals, potentially leading to new treatments for metabolic disorders. | ERC Consolid... | € 2.000.000 | 2025 | Details |
Microglia As conTroller of braIn metaboLism During AgingThis project aims to investigate how microglia, via the Trem2 gene, influence hypothalamic metabolism and energy homeostasis, with potential implications for treating immunometabolic dysfunction. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Environmental control of physiology through the brain-gut axisThis project aims to investigate how environmental factors influence the brain-gut axis in Drosophila, revealing mechanisms of metabolic adaptation and potential implications for understanding related pathophysiology. | ERC Starting... | € 1.929.674 | 2024 | Details |
Control of body weight by specialized brain-adipose loop neuronsThis project aims to identify and manipulate brain circuits involved in non-hormonal communication with white adipose tissue to enhance understanding and treatment of obesity. | ERC Starting... | € 1.499.521 | 2024 | Details |
Deconstructing Hypothalamic Neurocircuitry Architecture and Function in Metabolic Control during Health and Disease
This project aims to map hypothalamic neuron types and circuits involved in body weight regulation to enhance understanding and treatment of obesity and related metabolic diseases.
Decoding the Wiring of Integrative Neurocircuits in Metabolic Control
This project aims to map and characterize neurocircuits in the brain that regulate metabolism by integrating hormonal and nutrient signals, potentially leading to new treatments for metabolic disorders.
Microglia As conTroller of braIn metaboLism During Aging
This project aims to investigate how microglia, via the Trem2 gene, influence hypothalamic metabolism and energy homeostasis, with potential implications for treating immunometabolic dysfunction.
Environmental control of physiology through the brain-gut axis
This project aims to investigate how environmental factors influence the brain-gut axis in Drosophila, revealing mechanisms of metabolic adaptation and potential implications for understanding related pathophysiology.
Control of body weight by specialized brain-adipose loop neurons
This project aims to identify and manipulate brain circuits involved in non-hormonal communication with white adipose tissue to enhance understanding and treatment of obesity.