Exotic quantum states by locally-broken inversion symmetry in extreme conditions.
The Ixtreme project aims to explore locally broken inversion symmetry in materials to uncover novel quantum states and advance applications in topological quantum computing and superconductivity.
Projectdetails
Introduction
Strong correlations between electrons in solids lead to a variety of exotic quantum states like Mott insulator, unconventional high-Tc or odd-parity superconductivity. The groundbreaking discoveries of these states have not only generated huge advances in our understanding of condensed matter but also uncover a great potential for applications such as room-temperature superconductivity or quantum computing.
Importance of Symmetry
Symmetry is an important concept in classifying quantum states. So far, the majority of research has focused on global symmetry. I have recently discovered striking experimental evidence that local inversion symmetry breaking opens up a new route for the appearance of novel quantum states of matter.
Novel Quantum States
Namely, it can induce novel types of odd-parity superconductivity with possibly topological character, a much-needed state for topological quantum computing. However, the effect of local inversion symmetry breaking on quantum states still lacks our control and understanding.
Project Proposal
In the Ixtreme project, I propose to generalise and exploit this concept by investigating materials with locally broken inversion symmetry as a platform of exotic quantum states.
Research Methods
By measuring electric and thermal transport as well as magnetic properties in extreme conditions of:
- Very low temperature
- High magnetic field
- High hydrostatic and uniaxial pressure
the Ixtreme team will study and control the delicate interplay of local inversion-symmetry breaking with correlated electrons, magnetic and orbital degrees of freedom, topology, and superconductivity.
Expected Outcomes
Thereby, this project will establish new understanding of the physical properties of this promising novel class of unconventional metals and lead to new design methodologies for emergent states such as odd-parity superconductivity in locally non-centrosymmetric correlated electron systems.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.731.250 |
Totale projectbegroting | € 2.731.250 |
Tijdlijn
Startdatum | 1-12-2024 |
Einddatum | 30-11-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET DRESDENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Strongly interacting electrons in synthetic superlatticesThis project aims to develop theoretical models and numerical simulations to understand superconductivity and exotic phases in moiré superlattice materials, advancing condensed matter physics. | ERC Starting... | € 1.490.000 | 2023 | Details |
Distorting unconventional superconductivity - A grasp of electronic phases with multiple broken symmetriesThis project aims to develop a novel "distortiometry" method to explore the relationship between nematicity and superconductivity in materials, enhancing understanding of unconventional superconductivity. | ERC Starting... | € 1.499.536 | 2023 | Details |
Gaining leverage with spin liquids and superconductorsTROPIC aims to revolutionize quantum computing by developing advanced experiments to identify topological properties in quantum materials, focusing on Majorana fermions and unconventional superconductivity. | ERC Starting... | € 2.324.880 | 2023 | Details |
Tunable Interactions in 2-dimensional Materials for Quantum Matter and LightThis project aims to create a versatile 2D materials platform to explore and realize exotic quantum phases and non-classical light generation through interactions among optical excitations. | ERC Consolid... | € 2.597.500 | 2023 | Details |
Quantum Materials for Quantum DevicesDevelop new transition metal dichalcogenides for quantum technology, enabling advanced materials with unique properties for ultra-fast, low-power devices. | ERC Starting... | € 2.457.970 | 2024 | Details |
Strongly interacting electrons in synthetic superlattices
This project aims to develop theoretical models and numerical simulations to understand superconductivity and exotic phases in moiré superlattice materials, advancing condensed matter physics.
Distorting unconventional superconductivity - A grasp of electronic phases with multiple broken symmetries
This project aims to develop a novel "distortiometry" method to explore the relationship between nematicity and superconductivity in materials, enhancing understanding of unconventional superconductivity.
Gaining leverage with spin liquids and superconductors
TROPIC aims to revolutionize quantum computing by developing advanced experiments to identify topological properties in quantum materials, focusing on Majorana fermions and unconventional superconductivity.
Tunable Interactions in 2-dimensional Materials for Quantum Matter and Light
This project aims to create a versatile 2D materials platform to explore and realize exotic quantum phases and non-classical light generation through interactions among optical excitations.
Quantum Materials for Quantum Devices
Develop new transition metal dichalcogenides for quantum technology, enabling advanced materials with unique properties for ultra-fast, low-power devices.