Dissecting hepatocyte heterogeneity in liver growth to devise liver gene therapies for pediatric patients
HEPAGENE aims to understand hepatocyte heterogeneity and its role in liver growth to develop safe, effective gene therapies for pediatric metabolic diseases through advanced genetic engineering techniques.
Projectdetails
Introduction
In vivo genetic engineering of hepatocytes may represent a definitive cure for monogenic metabolic diseases. Integration of the therapeutic transgene into the target cell genome is essential for long-term expression after a single dose early in life and can be achieved by semi-randomly integrating lentiviral vectors or site-specific genome editing.
Hepatocyte Proliferation and Maintenance
Maintenance of the genetic modification upon hepatocyte proliferation in liver growth and turnover requires targeting the cells underlying these processes. Little is known about post-natal liver growth and how different hepatocyte subsets contribute to it.
Unexpectedly, we found that most hepatocytes are quiescent during liver growth, and a fraction of them generate most of the adult tissue.
Project Goals
The overall goal of HEPAGENE is to dissect hepatocyte heterogeneity in post-natal liver maturation and unravel its implications for in vivo gene engineering. This aims to ultimately design and develop safe, effective, and durable gene therapies to treat diseases of hepatic metabolism in pediatric patients.
To achieve this goal, we will:
- Characterize molecular programs of proliferating and quiescent hepatocyte subsets.
- Assess their susceptibility to lentiviral gene transfer and nuclease-mediated gene editing, in both normal mice and in a disease model of methylmalonic acidemia, a severe early-onset disease, taken as paradigmatic of inherited metabolic diseases.
- Estimate clonal dynamics of genetically modified hepatocytes in vivo in non-human primates and analyze gene signatures in human liver samples, to establish a correspondence between murine and primate hepatocyte subsets.
Methodology
We will exploit state-of-the-art organoid, single-cell, and multi-omic analyses including latest-generation spatial transcriptomics.
Conclusion
HEPAGENE will lead to improved understanding of liver biology and gene engineering of hepatocytes, paving the way for novel genomic medicine products that offer hope to children affected by otherwise incurable metabolic diseases.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.993.750 |
Totale projectbegroting | € 1.993.750 |
Tijdlijn
Startdatum | 1-9-2025 |
Einddatum | 31-8-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITA VITA-SALUTE SAN RAFFAELEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Prime editing to Repair Inherited Metabolic Errors: in vivo gene correction for human genetic diseaseDevelop an in vivo prime editing therapy for methylmalonic acidemia to correct genetic mutations in the liver, aiming for safe, efficient, and personalized treatments before irreversible damage occurs. | ERC Starting... | € 1.499.968 | 2022 | Details |
A novel and empowered TARGETed gene addition approach at a relevant microglia locus for the treatment of inherited NeuroMetabolic DiseasesDevelop a targeted gene addition approach at a microglia locus in HSCs to safely and effectively treat inherited neurometabolic diseases by enhancing timely microglia-like cell engraftment. | ERC Advanced... | € 2.495.250 | 2022 | Details |
Mechanisms of liver regeneration and disease across scales; from molecules to cells and tissueThis project aims to uncover liver regeneration mechanisms and disease pathways to develop complex organoids for studying tissue repair and disease principles. | ERC Consolid... | € 1.999.980 | 2023 | Details |
TACKLING FUNCTIONAL MATURATION FOR TRANSPLANTABLE HEMATOPOIETIC STEM CELL GENERATIONFUN-HSC aims to identify and mimic maturation pathways of hematopoietic stem cells from pluripotent stem cells to create a reliable, clinically valuable source for diverse therapies. | ERC Consolid... | € 2.265.684 | 2024 | Details |
Lifetime Metabolomics for Paediatric Liver Cancer Detection and Therapy Assessment Using Organ-on-Chip PlatformsLIFETIME aims to develop a scalable platform for lifetime metabolomics to enhance early diagnosis and treatment of hepatoblastoma through advanced profiling and tracking of metabolic changes. | ERC Starting... | € 2.499.318 | 2025 | Details |
Prime editing to Repair Inherited Metabolic Errors: in vivo gene correction for human genetic disease
Develop an in vivo prime editing therapy for methylmalonic acidemia to correct genetic mutations in the liver, aiming for safe, efficient, and personalized treatments before irreversible damage occurs.
A novel and empowered TARGETed gene addition approach at a relevant microglia locus for the treatment of inherited NeuroMetabolic Diseases
Develop a targeted gene addition approach at a microglia locus in HSCs to safely and effectively treat inherited neurometabolic diseases by enhancing timely microglia-like cell engraftment.
Mechanisms of liver regeneration and disease across scales; from molecules to cells and tissue
This project aims to uncover liver regeneration mechanisms and disease pathways to develop complex organoids for studying tissue repair and disease principles.
TACKLING FUNCTIONAL MATURATION FOR TRANSPLANTABLE HEMATOPOIETIC STEM CELL GENERATION
FUN-HSC aims to identify and mimic maturation pathways of hematopoietic stem cells from pluripotent stem cells to create a reliable, clinically valuable source for diverse therapies.
Lifetime Metabolomics for Paediatric Liver Cancer Detection and Therapy Assessment Using Organ-on-Chip Platforms
LIFETIME aims to develop a scalable platform for lifetime metabolomics to enhance early diagnosis and treatment of hepatoblastoma through advanced profiling and tracking of metabolic changes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Next-generation AAV vectors for liver-directed gene therapyAAVolution aims to enhance liver-directed gene therapy by developing innovative AAV vectors and technologies to overcome current limitations, expanding treatment access for more patients. | EIC Pathfinder | € 4.500.000 | 2022 | Details |
Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical applicationThis project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer. | EIC Pathfinder | € 3.797.562 | 2022 | Details |
IMPROVING THE EFFECTIVENESS AND SAFETY OF EPIGENETIC EDITING IN BRAIN REGENERATIONREGENERAR aims to develop a non-viral delivery system to reprogram glial cells into neurons for treating CNS injuries, focusing on safety, targeting, and stakeholder collaboration. | EIC Pathfinder | € 2.943.233 | 2024 | Details |
New Prime Editing and non-viral delivery strategies for Gene TherapyThis project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders. | EIC Pathfinder | € 4.406.097 | 2022 | Details |
Inhibitor-Mediated Programming of GlycoformsThe project aims to revolutionize glycan manipulation using Inhibitor-Mediated Programming of Glycoforms (IMProGlyco) to create precision-engineered therapeutic proteins and enhance cellular functions. | EIC Pathfinder | € 2.998.878 | 2025 | Details |
Next-generation AAV vectors for liver-directed gene therapy
AAVolution aims to enhance liver-directed gene therapy by developing innovative AAV vectors and technologies to overcome current limitations, expanding treatment access for more patients.
Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical application
This project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer.
IMPROVING THE EFFECTIVENESS AND SAFETY OF EPIGENETIC EDITING IN BRAIN REGENERATION
REGENERAR aims to develop a non-viral delivery system to reprogram glial cells into neurons for treating CNS injuries, focusing on safety, targeting, and stakeholder collaboration.
New Prime Editing and non-viral delivery strategies for Gene Therapy
This project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders.
Inhibitor-Mediated Programming of Glycoforms
The project aims to revolutionize glycan manipulation using Inhibitor-Mediated Programming of Glycoforms (IMProGlyco) to create precision-engineered therapeutic proteins and enhance cellular functions.