Characterization of the magnetism of exoplanets
ExoMagnets aims to quantify the magnetic properties and interactions of exoplanets with their environments using theoretical models and observations from the SKA Observatory.
Projectdetails
Introduction
The research in exoplanetary sciences has skyrocketed since the first discovery of planet 51 Peg b by Mayor and Queloz (1995). More than 5200 exoplanets have been discovered since and have revolutionized our understanding of how star-planet systems are formed and evolve. More and more exoplanets keep being discovered today, and their characteristics and that of their host star are being precisely determined using space-based and ground-based multi-wavelength observations.
Current Limitations
Nevertheless, we are still blind to a fundamental aspect of exoplanets: what kind of magnetism and magnetosphere do they possess? On Earth, we know the magnetic field shields the atmosphere from the space environment and has been essential to maintaining life as we know it.
Future Prospects
With the advent of the SKA Observatory, we expect to detect magnetospheric radio signals from hundreds of exoplanets. These magnetospheres also lead to star-planet magnetic interactions for about a third of the known exoplanets, which leave observable traces on the activity tracers of the host star. However, such detections are not enough by themselves to quantify the magnetic properties of exoplanets due to an incomplete theoretical understanding of magnetic interactions.
Research Objectives
In ExoMagnets, we will therefore address the following science questions:
- How do planets interact magnetically with their environments?
- How much energy can be involved, and what observational tracers can be detected?
- What type of magnetism can be sustained by an Earth in the habitable zone of a low-mass star?
Methodology
We will address these questions by filling out the present theoretical gaps about the magnetic coupling between an exoplanet and its local environment. We will quantify for the first time its energetics, its observable multi-wavelength spectrum, and leverage them to constrain the magnetism of exoplanets on short-period orbits. These approaches will be combined to provide the theoretical tools to characterize the magnetism of a large sample of exoplanets.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.992.863 |
Totale projectbegroting | € 1.992.863 |
Tijdlijn
Startdatum | 1-6-2024 |
Einddatum | 31-5-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVESpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Chasing plasma storms on exoplanetsThis project aims to detect massive plasma ejections from stars and measure exoplanetary magnetic fields using advanced radio observations from LOFAR, enhancing our understanding of exoplanet atmospheres. | ERC Starting... | € 1.487.199 | 2022 | Details |
The Quest for MAGNetIc Fields in A and F TYpe StarsMAGNIFY aims to investigate internal and surface magnetic fields in A&F stars using asteroseismology and stellar spot analysis to understand their origins and evolution. | ERC Consolid... | € 1.999.933 | 2024 | Details |
Radio stars and exoplanets: Discovering the space weather of other worldsThis project aims to enhance our understanding of exoplanet habitability by using low-frequency radio techniques to analyze space weather conditions around stars and their interactions with orbiting planets. | ERC Starting... | € 1.485.971 | 2025 | Details |
New Windows onto the Sun: Probing the Sun’s magnetic field with an array of new missions and observatoriesThis project aims to enhance understanding of the Sun's magnetic field and its impact on solar activity using advanced observational missions and innovative data analysis techniques. | ERC Advanced... | € 2.498.750 | 2023 | Details |
A MISTery of Long Secondary Periods in Pulsating Red Giants - Traces of Exoplanets?This project aims to develop a novel method for detecting distant exoplanets using bright giant stars with long secondary periods, potentially revolutionizing our understanding of planet distribution in galaxies. | ERC Starting... | € 1.380.760 | 2022 | Details |
Chasing plasma storms on exoplanets
This project aims to detect massive plasma ejections from stars and measure exoplanetary magnetic fields using advanced radio observations from LOFAR, enhancing our understanding of exoplanet atmospheres.
The Quest for MAGNetIc Fields in A and F TYpe Stars
MAGNIFY aims to investigate internal and surface magnetic fields in A&F stars using asteroseismology and stellar spot analysis to understand their origins and evolution.
Radio stars and exoplanets: Discovering the space weather of other worlds
This project aims to enhance our understanding of exoplanet habitability by using low-frequency radio techniques to analyze space weather conditions around stars and their interactions with orbiting planets.
New Windows onto the Sun: Probing the Sun’s magnetic field with an array of new missions and observatories
This project aims to enhance understanding of the Sun's magnetic field and its impact on solar activity using advanced observational missions and innovative data analysis techniques.
A MISTery of Long Secondary Periods in Pulsating Red Giants - Traces of Exoplanets?
This project aims to develop a novel method for detecting distant exoplanets using bright giant stars with long secondary periods, potentially revolutionizing our understanding of planet distribution in galaxies.