Autoxitus: Molecular mechanisms and non-cell autonomous signalling

This project aims to define the molecular mechanisms of a novel secretion pathway, autoxitus, that allows autophagosomes to exit cells, impacting stress signaling and viral release.

Subsidie
€ 2.000.000
2024

Projectdetails

Introduction

Cells control their content by balancing its synthesis and degradation. Autophagy is a key degradation process capable of engulfing large fractions of cells, including organelles, into double-membrane vesicles called autophagosomes. These fuse with lysosomes, causing degradation of their cargo. Secretory pathways, including secretory autophagy, offer an alternative option to remove unwanted materials from cells. However, mechanisms allowing the secretion of larger cellular components are still unknown.

Identification of Autoxitus

We identified a novel pathway, which we termed autoxitus – for self (auto) exit (xitus) – that leads to the secretion of autophagosomes. This proposal aims at defining the molecular mechanism and regulation of autoxitus.

Mechanisms of Autoxitus

We will first study how specificity and decision-making between secretory autoxitus and degradative autophagy routes is achieved and whether there is cross-regulation.

Composition of Autoxitus Vesicles

Autophagosomes on the autoxitus route can contain parts of the cytosol, but also large fragments of organelles. This raises the question of whether the secreted autoxitus vesicles signal to neighbouring cells in a non-cell autonomous manner.

Signalling Processes

We aim to uncover the impact of these signalling processes to determine whether and how autoxitus helps to signal stress conditions or may even deliver material or organelles to other cells.

Physiological Implications

Finally, the role of autoxitus in two (patho-)physiological conditions will be analysed. Since autophagic processes are key to viral particle release, we will study the contribution of autoxitus to the viral life cycle. Furthermore, we will investigate the role of autoxitus in the release of protein aggregates from cells and the resulting seeding propensity.

Conclusion

This proposal will give groundbreaking insight into autoxitus, its molecular underpinnings, and physiological consequences. AutoXitus will provide the framework for future integration into numerous cellular pathways.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • JOHANN WOLFGANG GOETHE-UNIVERSITAET FRANKFURT AM MAINpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Dissect cargo selectivity in autophagy

AUTO-SELECT aims to identify autophagy substrates and their selection mechanisms in various organs, using innovative mouse models and -omic technologies to enhance therapeutic strategies for connective tissue disorders.

€ 1.993.750
ERC Starting...

Intrinsic autophagy receptors: identity and cellular mechanisms.

This project aims to uncover the role of intrinsic receptors in the selective autophagy of macromolecular complexes, enhancing our understanding of cellular quality control and aging-related diseases.

€ 1.495.000
ERC Starting...

Final act of the autophagy symphony: Whole-organism orchestration of autophagy termination

The FINALphagy project aims to develop genetic and computational tools to study and manipulate autophagy termination dynamics in organisms, enhancing understanding of nutrient response mechanisms.

€ 1.500.000
ERC Starting...

Decoding Extracellular Vesicle-mediated organ crosstalk in vivo

This project aims to investigate hepatic extracellular vesicle-mediated inter-organ communication in vivo using a transparent zebrafish model to enhance understanding of their role in health and disease.

€ 1.500.000
ERC Consolid...

Negative Regulation of Inflammatory Responses Revealed with Camelid Nanobodies

The project aims to develop new cell biology tools to uncover intricate signaling networks that downregulate inflammation, focusing on the roles of NLRC3 and NLRX1 in controlling pro-inflammatory responses.

€ 1.997.828