Action Selection in the Midbrain: Neuromodulation of Visuomotor Senses
This project aims to investigate how the Superior Colliculus integrates neuromodulatory signals to influence sensory processing and behavior, enhancing understanding of action selection in animals.
Projectdetails
Introduction
In an ever-changing natural world, animals must constantly adapt their behavior by extracting relevant information from the environment in a context-dependent manner. This is a complex task because the relevance of sensory stimuli rapidly changes according to the animal’s internal states, evidence, attention, and goals.
Neuromodulatory Systems
In the brain, neuromodulatory systems are thought to encode environmental and internal signals, such as novelty, reward, effort, and risk, providing critical input to ensure appropriate action selection. However, classically, neuroscientists have opted to study sensorimotor transformations as a reflex arc, largely ignoring complex modulatory contributions due to their experimental inaccessibility.
Research Proposal
In this proposal, I will explore the neuromodulatory strategies used by the brain to tailor sensorimotor computations according to the immediate needs of the animal.
Key Node: Superior Colliculus
A key node for sensorimotor transformation and spatial attention is the Superior Colliculus (SC). The SC is also a neuromodulatory hub, where retinal streams converge with highly diverse and functionally mysterious neuromodulatory inputs.
Research Objectives
Here, I will take advantage of the SC’s role as a gatekeeper in sensory processing and behavioral control to unravel the multiplexed logic and function of neuromodulation. To do so, I will:
- Quantitatively describe SC’s visual and non-visual dynamics on a moment-by-moment basis and define their interactions.
- Determine the properties, orchestration, and influence of SC’s neuromodulatory inputs on sensory processing, goal-directed behaviors, and spatial attention.
- Describe the role of neuromodulation mechanistically by developing a novel functional connectomics approach and mapping circuit motif changes.
Implications
Given the implication of neuromodulation in brain disorders, this work will shed light on the tight orchestration of neuromodulation that ensures appropriate or abnormal selection of actions, according to the animal’s immediate needs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.998.430 |
Totale projectbegroting | € 1.998.430 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Tracing Visual Computations from the Retina to BehaviorThis project aims to investigate how the superior colliculus integrates retinal signals to drive behavior using imaging, optogenetics, and modeling, revealing mechanisms of visual information processing. | ERC Starting... | € 1.871.465 | 2025 | Details |
Combinatorial neuromodulation of internal statesThis project aims to investigate how combinations of neuromodulators influence neuronal dynamics and circuit configurations in the hippocampus-prefrontal circuit during various behavioral states in mice. | ERC Starting... | € 1.499.563 | 2025 | Details |
Understanding diversity in decision strategy: from neural circuits to behaviorThis project aims to uncover the neural mechanisms behind the brain's flexibility in decision-making strategies during foraging, using advanced computational and electrophysiological methods in mice. | ERC Starting... | € 1.996.415 | 2025 | Details |
Neuromuscular-cognitive interactions in sensorimotor decision makingMYODECISION aims to enhance understanding of sensory-motor interaction by developing decision paradigms that integrate neuromuscular demands with cognitive processes in real-time. | ERC Starting... | € 1.499.916 | 2023 | Details |
Neuromodulatory control of brain network dynamicsThis project aims to uncover the physiological mechanisms of spontaneous brain network dynamics in awake mice through advanced neuromodulation techniques, with implications for neuroscience. | ERC Consolid... | € 1.999.438 | 2025 | Details |
Tracing Visual Computations from the Retina to Behavior
This project aims to investigate how the superior colliculus integrates retinal signals to drive behavior using imaging, optogenetics, and modeling, revealing mechanisms of visual information processing.
Combinatorial neuromodulation of internal states
This project aims to investigate how combinations of neuromodulators influence neuronal dynamics and circuit configurations in the hippocampus-prefrontal circuit during various behavioral states in mice.
Understanding diversity in decision strategy: from neural circuits to behavior
This project aims to uncover the neural mechanisms behind the brain's flexibility in decision-making strategies during foraging, using advanced computational and electrophysiological methods in mice.
Neuromuscular-cognitive interactions in sensorimotor decision making
MYODECISION aims to enhance understanding of sensory-motor interaction by developing decision paradigms that integrate neuromuscular demands with cognitive processes in real-time.
Neuromodulatory control of brain network dynamics
This project aims to uncover the physiological mechanisms of spontaneous brain network dynamics in awake mice through advanced neuromodulation techniques, with implications for neuroscience.