Understanding the molecular basis of protein folding disorders and protein quality control in muscle
This project aims to investigate muscle protein disorders in C. elegans by developing PQC tools to study myosin misfolding and identify cellular rescue mechanisms to enhance understanding of proteinopathies.
Projectdetails
Introduction
Mutations in certain proteins can cause their misfolding and aggregation, posing a potential threat to the health of an organism. Protein aggregation is counteracted by protein quality control (PQC) mechanisms that reduce the amounts of damaged molecules.
Aging and Protein Misfolding Diseases
As we age, however, the crucial surveillance mechanisms weaken and become less effective, leading to protein misfolding diseases. The most well-known protein disorders, or proteinopathies – Alzheimer's, Huntington's, and Parkinson's diseases – are characterized by the formation of toxic protein aggregates, known as amyloids.
Hidden Protein Disorders
Current research focuses on such amyloid diseases; however, there seem to be many other hidden protein disorders. In principle, every mutation in a protein can affect its folding and stability and may become pathological only when PQC mechanisms are compromised.
Research Objectives
To better understand this kind of proteinopathy, we will generate novel PQC tools and study muscle protein disorders in the nematode Caenorhabditis elegans.
Methodology
-
Design of Fluorescent Reporters
We will design dual-colour fluorescent protein reporters to monitor the misfolding and aggregation of disease-linked myosin variants, our model proteins. -
MyoState Library
The ‘MyoState’ library, comprising hundreds of mutants with a broad range of folding defects, will allow us to study the pathological impact of individual myopathy mutations and investigate cellular rescue mechanisms. -
Animal Model
In C. elegans, myosin disease mutations cause characteristic defects in motility and muscle structure, which can be rescued by dietary restriction. This animal model thus provides us with a unique opportunity to perform genome-wide screens that will define the PQC network in muscle cells.
Goals
By performing structural and functional analyses of key factors in this network, we aim to reveal the fundamental mechanisms of myosin quality control and its regulation. Our ultimate goal is to understand how the misfolding of functional proteins, whether due to mutation or age, impairs cell function.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.824 |
Totale projectbegroting | € 2.498.824 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Cellular Strategies of Protein Quality Control-DegradationThis project aims to uncover the molecular mechanisms of stress-induced protein quality control and E3 ubiquitin ligases to combat neurodegeneration from chronic protein damage. | ERC Advanced... | € 2.500.000 | 2025 | Details |
Mechanisms of human co-translational quality control and it’s role in neural tissue.This project aims to elucidate the mechanisms of ribosome-associated quality control in humans and its implications for neurodegeneration and aging, using cryo-EM and C. elegans models. | ERC Starting... | € 1.500.000 | 2024 | Details |
Deciphering co-translational protein folding, assembly and quality control pathways, in health and diseaseThis project aims to elucidate co-translational protein folding and degradation mechanisms to understand misfolding diseases and improve therapeutic strategies. | ERC Starting... | € 1.412.500 | 2022 | Details |
Global Amyloid Mapping: Solving Amyloid Nucleation by Deep MutagenesisThis project aims to map mutations affecting amyloid nucleation, model transition states, and identify stress-responsive sequences to enhance understanding and treatment of amyloid-related diseases. | ERC Consolid... | € 1.999.008 | 2024 | Details |
In situ analysis of chaperone mediated protein folding and stabilityThis project aims to investigate the dynamic role of molecular chaperones in protein folding and maintenance within live cells using advanced imaging and biochemical techniques. | ERC Advanced... | € 2.136.875 | 2022 | Details |
Cellular Strategies of Protein Quality Control-Degradation
This project aims to uncover the molecular mechanisms of stress-induced protein quality control and E3 ubiquitin ligases to combat neurodegeneration from chronic protein damage.
Mechanisms of human co-translational quality control and it’s role in neural tissue.
This project aims to elucidate the mechanisms of ribosome-associated quality control in humans and its implications for neurodegeneration and aging, using cryo-EM and C. elegans models.
Deciphering co-translational protein folding, assembly and quality control pathways, in health and disease
This project aims to elucidate co-translational protein folding and degradation mechanisms to understand misfolding diseases and improve therapeutic strategies.
Global Amyloid Mapping: Solving Amyloid Nucleation by Deep Mutagenesis
This project aims to map mutations affecting amyloid nucleation, model transition states, and identify stress-responsive sequences to enhance understanding and treatment of amyloid-related diseases.
In situ analysis of chaperone mediated protein folding and stability
This project aims to investigate the dynamic role of molecular chaperones in protein folding and maintenance within live cells using advanced imaging and biochemical techniques.