The origin and impact of impaired ubiquitin signaling in the degeneration of neurons
This project aims to investigate dysregulated ubiquitin signaling as an early cause of neurodegeneration, using innovative human neuronal models to enhance understanding and treatment of Alzheimer's disease.
Projectdetails
Introduction
Neurodegenerative diseases share similar hallmarks such as protein aggregation, suggesting that impaired protein degradation may be a common denominator. The major cellular pathways mediating protein degradation are the Ubiquitin-proteasome system (UPS) and autophagy, both regulated by ubiquitin signaling.
Background
However, aside from specific mutations in familial neurodegeneration cases, an early cause for failing ubiquitin-dependent proteolysis remains unclear. This proposal will test our unconventional hypothesis that dysregulated ubiquitin signaling is an early event in mechanisms of neurodegeneration, linking together numerous disease hallmarks.
Groundbreaking Findings
Towards this goal, we present groundbreaking findings that a mutated UPS protein resulting from a non-heritable transcription frameshift and present in the brains of neurodegenerative patients, particularly Alzheimer's disease (AD), is sufficient to trigger disease hallmarks in 3-D human neuronal cultures. This unique set-up replicates the main pathological hallmarks of AD without relying on any of the known genetic causes or risk factors.
Novel Model
Utilizing this novel model, we have identified a previously unknown enzyme active site in a key neuroprotective protein, which now allows us to study the role of ubiquitin signaling in disease pathology.
Objectives
Specifically, this proposal seeks to understand both the source of disease-related ubiquitin signaling deterioration and its impact on neurons, by:
- Studying the mechanisms that trigger disruption of ubiquitin signaling in neurons.
- Understanding the consequences of altered ubiquitin signaling in human neuronal models of AD.
- Searching for mechanisms of neuroprotection mediated by key enzymes of the UPS.
Expected Outcomes
The outcome will develop new models of neurodegeneration, improve methods to study ubiquitin signaling in neurons, and yield a mechanistic understanding of UPS components in neuronal health and disease. Furthermore, the results will pave the way for developing new treatment approaches.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 2.500.000 |
Tijdlijn
Startdatum | 1-11-2024 |
Einddatum | 31-10-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ADPribosylation and Ubiquitination; post-translational interplayThis project aims to investigate the interplay between ubiquitination and ADPribosylation in cellular processes to develop novel therapeutic strategies for diseases like infections and cancer. | ERC Consolid... | € 1.999.625 | 2024 | Details |
(Re-)Writing the Ubiquitin Code – Manipulating Polyubiquitin Chain Linkage to Investigate Ubiquitin Signalling in Genome Maintenance and BeyondThis project aims to develop innovative tools for studying polyubiquitylation's role in genome maintenance and its implications for cancer and aging, enhancing our understanding of cellular signaling pathways. | ERC Advanced... | € 2.499.799 | 2025 | Details |
Deciphering Neurodegenerative Disease with fast 3D imaging & functional nanoscopyThis project aims to investigate the biophysical mechanisms of protein aggregation in Huntington's Disease using advanced imaging techniques to enhance understanding of neurodegenerative processes. | ERC Starting... | € 1.500.000 | 2024 | Details |
Deciphering the regulatory logic of the ubiquitin systemThis project aims to elucidate the substrate recognition mechanisms of E3 ubiquitin ligases using functional genetic approaches to enhance understanding of the ubiquitin-proteasome system for therapeutic applications. | ERC Starting... | € 1.528.843 | 2025 | Details |
Ubiquitin-Proteasome System crosstalk with MetabolismThis project aims to elucidate the regulatory crosstalk between ubiquitination and cellular metabolites using advanced biophysical techniques to enhance understanding of metabolic homeostasis. | ERC Advanced... | € 2.089.688 | 2023 | Details |
ADPribosylation and Ubiquitination; post-translational interplay
This project aims to investigate the interplay between ubiquitination and ADPribosylation in cellular processes to develop novel therapeutic strategies for diseases like infections and cancer.
(Re-)Writing the Ubiquitin Code – Manipulating Polyubiquitin Chain Linkage to Investigate Ubiquitin Signalling in Genome Maintenance and Beyond
This project aims to develop innovative tools for studying polyubiquitylation's role in genome maintenance and its implications for cancer and aging, enhancing our understanding of cellular signaling pathways.
Deciphering Neurodegenerative Disease with fast 3D imaging & functional nanoscopy
This project aims to investigate the biophysical mechanisms of protein aggregation in Huntington's Disease using advanced imaging techniques to enhance understanding of neurodegenerative processes.
Deciphering the regulatory logic of the ubiquitin system
This project aims to elucidate the substrate recognition mechanisms of E3 ubiquitin ligases using functional genetic approaches to enhance understanding of the ubiquitin-proteasome system for therapeutic applications.
Ubiquitin-Proteasome System crosstalk with Metabolism
This project aims to elucidate the regulatory crosstalk between ubiquitination and cellular metabolites using advanced biophysical techniques to enhance understanding of metabolic homeostasis.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Opto-Electronic Neural Connectoid Model Implemented for Neurodegenerative DiseaseThe project aims to develop a novel human brain-organoid model, called connectoids, to replace animal testing for Parkinson's disease, enhancing therapy monitoring and reducing societal burdens. | EIC Pathfinder | € 2.992.203 | 2022 | Details |
Opto-Electronic Neural Connectoid Model Implemented for Neurodegenerative Disease
The project aims to develop a novel human brain-organoid model, called connectoids, to replace animal testing for Parkinson's disease, enhancing therapy monitoring and reducing societal burdens.