Multi-messenger Studies of Extragalactic Super-colliders
This project aims to explore proton acceleration, jet formation, and neutrino production in active galactic nuclei using multi-messenger observations to enhance our understanding of extreme cosmic energy processes.
Projectdetails
Introduction
Active galactic nuclei (AGN) are among the most powerful particle accelerators in the Universe. They convert the gravitational energy of matter accreted by supermassive black holes (SMBHs) into electromagnetic and kinetic energy, producing highly relativistic electrons and protons. They are most likely originated from the vicinity of SMBHs, but the exact mechanism of their production remains elusive.
Particle Acceleration
Electrons are predominantly found in jets, whose acceleration and collimation are still poorly understood. Even less clear is how and where protons are accelerated and how this process is connected to neutrino production. The importance of investigating such high-energy particles transcends astrophysics, as they probe regimes that particle accelerators on Earth will likely never reach.
Recent Developments
The recent detection of a high-energy neutrino signal from the blazar TXS 0506+056 by the IceCube Neutrino Observatory has brought up new multi-messenger opportunities for AGN studies which can be now most efficiently explored.
Proposal Objectives
This proposal sets its main aim on carrying out such an exploration and addressing the pivotal questions about:
- Proton acceleration
- Jet formation and collimation
- Neutrino production in AGN
To achieve these goals, we will perform and utilize observations of AGN across the electromagnetic spectrum, with a particular focus on high-resolution very-long-baseline interferometry and data collected by high-energy neutrino telescopes.
Expected Outcomes
The information and insight gathered through these investigations will provide the most accurate clues about the extreme energy output in AGN and transform these objects into well-understood cosmic laboratories which can probe physical conditions unachievable in any experiments performed on Earth.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.799.989 |
Totale projectbegroting | € 2.799.989 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Relativistic Jets in the Multimessenger EraThis project aims to enhance the detection and understanding of gravitational wave signals from relativistic jets in multimessenger astronomy, focusing on their implications in various cosmic events. | ERC Advanced... | € 2.498.750 | 2022 | Details |
Why a new neutrino telescope? Because we can.NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe. | ERC Advanced... | € 3.169.384 | 2022 | Details |
A Gamma-ray Infrastructure to Advance Gravitational Wave AstrophysicsGIGA aims to establish a gamma-ray pulsar timing array to detect gravitational wave backgrounds, enhancing our understanding of supermassive black hole mergers and probing physics beyond the Standard Model. | ERC Starting... | € 1.658.500 | 2024 | Details |
From Subatomic to Cosmic Scales: Simulating, Modelling, Analysing Binary Neutron Star MergersThe project aims to develop theoretical models for binary neutron star mergers to enhance the accuracy of multi-messenger observations, enabling insights into matter at supranuclear densities and the expansion rate of the Universe. | ERC Starting... | € 1.499.762 | 2023 | Details |
Extreme Particle Acceleration in Shocks: from the laboratory to astrophysicsThe XPACE project aims to investigate the microphysics of non-relativistic and relativistic astrophysical shocks through simulations and laboratory experiments to enhance understanding of particle acceleration and cosmic rays. | ERC Consolid... | € 1.799.990 | 2023 | Details |
Relativistic Jets in the Multimessenger Era
This project aims to enhance the detection and understanding of gravitational wave signals from relativistic jets in multimessenger astronomy, focusing on their implications in various cosmic events.
Why a new neutrino telescope? Because we can.
NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe.
A Gamma-ray Infrastructure to Advance Gravitational Wave Astrophysics
GIGA aims to establish a gamma-ray pulsar timing array to detect gravitational wave backgrounds, enhancing our understanding of supermassive black hole mergers and probing physics beyond the Standard Model.
From Subatomic to Cosmic Scales: Simulating, Modelling, Analysing Binary Neutron Star Mergers
The project aims to develop theoretical models for binary neutron star mergers to enhance the accuracy of multi-messenger observations, enabling insights into matter at supranuclear densities and the expansion rate of the Universe.
Extreme Particle Acceleration in Shocks: from the laboratory to astrophysics
The XPACE project aims to investigate the microphysics of non-relativistic and relativistic astrophysical shocks through simulations and laboratory experiments to enhance understanding of particle acceleration and cosmic rays.