Hyperfine coupled spins with time evolution readout
HYPSTER aims to develop a quantum simulator using individual magnetic atoms and scanning tunneling microscopy to enhance coherence times and facilitate real-time quantum dynamics exploration.
Projectdetails
Introduction
Quantum simulation is a promising strategy for understanding the behaviour of quantum systems that are too complex to be calculated directly. HYPSTER will make crucial steps towards creating a quantum simulator from individual magnetic atoms, addressed by means of a scanning tunnelling microscope. I will engineer atomic structures combining electron and nuclear spins – coupled to each other via hyperfine interaction – and read out their collective quantum coherent evolution in real time.
Coherence Time
The lifetime of any quantum state is limited by its coherence time. While electron spins on a surface suffer from continuous decoherence due to electrons from the substrate, nuclear spins are much better isolated, holding potential for orders of magnitude longer coherence times. By providing controlled access to the real-time dynamics of the nuclear spin, HYPSTER aims to unlock this invaluable potential.
Measurement Procedure
First, expanding upon a unique measurement procedure developed in my group, I will trace the combined time evolution of a nuclear spin coupled to an electron spin, allowing quantum information to be exchanged between the two.
Coupling and Decoupling Spins
Next, I will explore methods to controllably couple and decouple the nuclear and electron spins by rapidly adjusting the local Hamiltonian. This will allow the nuclear spin to evolve by itself, not hindered by external decoherence sources.
Remote Detection
Finally, I will employ dual-frequency electron spin resonance to enable remote detection of spin dynamics, constructing a pathway towards connecting multiple nuclear spins over a distance.
Objectives
The objectives of HYPSTER will provide a toolset that can be readily adopted throughout the blooming field of on-surface spin systems and set the stage for true atomic-scale quantum simulation.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.741 |
Totale projectbegroting | € 2.498.741 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITEIT DELFTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Atomic scale coherent manipulation of the electron spin in semiconductorsOneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications. | ERC Starting... | € 1.913.122 | 2024 | Details |
On-Surface Atomic Spins with Outstanding Quantum CoherenceATOMQUANT aims to enhance the coherence of spins on surfaces for quantum information processing by developing a novel AFM-based architecture and utilizing remote nuclear spins as quantum resources. | ERC Starting... | € 2.260.965 | 2024 | Details |
Coherent control of spin chains in graphene nanostructuresCONSPIRA aims to synthesize graphene architectures with interacting spin chains to control their quantum states for advancements in quantum computation and condensed matter physics. | ERC Advanced... | € 2.988.750 | 2024 | Details |
Molecular Spins for Quantum TechnologyMSpin aims to develop a molecular platform for controlling nuclear spins to enhance quantum technologies, enabling robust quantum memory and molecule-photon entanglement for advanced applications. | ERC Starting... | € 1.893.184 | 2023 | Details |
Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materialsThe project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales. | ERC Starting... | € 1.572.500 | 2025 | Details |
Atomic scale coherent manipulation of the electron spin in semiconductors
OneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications.
On-Surface Atomic Spins with Outstanding Quantum Coherence
ATOMQUANT aims to enhance the coherence of spins on surfaces for quantum information processing by developing a novel AFM-based architecture and utilizing remote nuclear spins as quantum resources.
Coherent control of spin chains in graphene nanostructures
CONSPIRA aims to synthesize graphene architectures with interacting spin chains to control their quantum states for advancements in quantum computation and condensed matter physics.
Molecular Spins for Quantum Technology
MSpin aims to develop a molecular platform for controlling nuclear spins to enhance quantum technologies, enabling robust quantum memory and molecule-photon entanglement for advanced applications.
Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materials
The project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Spatial Quantum Optical Annealer for Spin HamiltoniansHEISINGBERG aims to enhance a spatial photonic spin simulator with squeezed light to achieve quantum advantage, enabling efficient solutions for NP-hard problems via advanced algorithms. | EIC Pathfinder | € 3.260.250 | 2023 | Details |
Spatial Quantum Optical Annealer for Spin Hamiltonians
HEISINGBERG aims to enhance a spatial photonic spin simulator with squeezed light to achieve quantum advantage, enabling efficient solutions for NP-hard problems via advanced algorithms.