Hyperfine coupled spins with time evolution readout

HYPSTER aims to develop a quantum simulator using individual magnetic atoms and scanning tunneling microscopy to enhance coherence times and facilitate real-time quantum dynamics exploration.

Subsidie
€ 2.498.741
2024

Projectdetails

Introduction

Quantum simulation is a promising strategy for understanding the behaviour of quantum systems that are too complex to be calculated directly. HYPSTER will make crucial steps towards creating a quantum simulator from individual magnetic atoms, addressed by means of a scanning tunnelling microscope. I will engineer atomic structures combining electron and nuclear spins – coupled to each other via hyperfine interaction – and read out their collective quantum coherent evolution in real time.

Coherence Time

The lifetime of any quantum state is limited by its coherence time. While electron spins on a surface suffer from continuous decoherence due to electrons from the substrate, nuclear spins are much better isolated, holding potential for orders of magnitude longer coherence times. By providing controlled access to the real-time dynamics of the nuclear spin, HYPSTER aims to unlock this invaluable potential.

Measurement Procedure

First, expanding upon a unique measurement procedure developed in my group, I will trace the combined time evolution of a nuclear spin coupled to an electron spin, allowing quantum information to be exchanged between the two.

Coupling and Decoupling Spins

Next, I will explore methods to controllably couple and decouple the nuclear and electron spins by rapidly adjusting the local Hamiltonian. This will allow the nuclear spin to evolve by itself, not hindered by external decoherence sources.

Remote Detection

Finally, I will employ dual-frequency electron spin resonance to enable remote detection of spin dynamics, constructing a pathway towards connecting multiple nuclear spins over a distance.

Objectives

The objectives of HYPSTER will provide a toolset that can be readily adopted throughout the blooming field of on-surface spin systems and set the stage for true atomic-scale quantum simulation.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.498.741
Totale projectbegroting€ 2.498.741

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITEIT DELFTpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Atomic scale coherent manipulation of the electron spin in semiconductors

OneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications.

€ 1.913.122
ERC Starting...

On-Surface Atomic Spins with Outstanding Quantum Coherence

ATOMQUANT aims to enhance the coherence of spins on surfaces for quantum information processing by developing a novel AFM-based architecture and utilizing remote nuclear spins as quantum resources.

€ 2.260.965
ERC Advanced...

Coherent control of spin chains in graphene nanostructures

CONSPIRA aims to synthesize graphene architectures with interacting spin chains to control their quantum states for advancements in quantum computation and condensed matter physics.

€ 2.988.750
ERC Starting...

Molecular Spins for Quantum Technology

MSpin aims to develop a molecular platform for controlling nuclear spins to enhance quantum technologies, enabling robust quantum memory and molecule-photon entanglement for advanced applications.

€ 1.893.184
ERC Starting...

Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materials

The project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales.

€ 1.572.500

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Spatial Quantum Optical Annealer for Spin Hamiltonians

HEISINGBERG aims to enhance a spatial photonic spin simulator with squeezed light to achieve quantum advantage, enabling efficient solutions for NP-hard problems via advanced algorithms.

€ 3.260.250