Decoding consequences of complex chromosomal aberrations by multi-modal single-cell deconstruction to overcome treatment-resistance cancer
SHATTER-AML aims to unravel the genomic complexities of acute myeloid leukemia with complex karyotype through advanced single-cell analysis to develop targeted therapies against treatment resistance.
Projectdetails
Introduction
How does a cell with unstable, complex genomic rearrangements stay alive, and even give rise to aggressive, highly resistant malignancies? This question remains an ultimate research challenge for cancers with highly aberrant genomes, such as acute myeloid leukemia with complex karyotype (CK-AML).
Research Challenges
Its etiology, time-resolved clonal dynamics, molecular heterogeneity, and treatment resistance mechanisms are still largely elusive. In particular, the genetic and non-genetic dynamics that drive cancer progression under treatment are elusive to current technologies and escape single-cell resolution.
Project Overview
SHATTER-AML will tackle the genomic enigma of CK-AML by analyzing longitudinally obtained triplicate (diagnosis, treated, relapse) samples to examine intra-patient genetic and non-genetic heterogeneity using scNOVA-CITE, a newly developed multi-modal single-cell omics approach.
Methodology
This approach combines:
- Structural variation discovery with nucleosome occupancy and cis-regulatory element accessibility profiling (scNOVA)
- Cellular indexing of transcriptomes and epitome sequencing (CITE-seq)
Expected Outcomes
We will uncover multi-level disease dynamics at single-cell and subclonal levels along the disease course, providing a blueprint for studies of other structurally instable cancers. Identified molecular insights into the networks mediating therapy resistance, leukemic stem cell activity, and immune escape will be further explored functionally in patient-derived in vivo models.
Techniques Used
- Pharmacological interference and CRISPRi are used to engineer deregulated signaling pathways for precision oncology.
- CRISPRa screens are applied to sensitize CK-AML stem cells to natural killer cell-mediated elimination.
Conclusion
SHATTER-AML will fundamentally transform our understanding of the impact of clonal evolutionary dynamics of malignancies triggered by aberrant genomes and aims to develop novel preclinical strategies to combat CK-AML resistance via immunological and precision oncology approaches.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.375 |
Totale projectbegroting | € 2.499.375 |
Tijdlijn
Startdatum | 1-7-2022 |
Einddatum | 30-6-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapyThis project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance. | ERC Starting... | € 1.882.440 | 2024 | Details |
Cancer cell plasticity on targeted therapyThis project aims to develop innovative cancer therapies by analyzing tumor heterogeneity and targeting drug-tolerant persister cells to prevent resistance and improve patient outcomes. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Elucidating the Spatial and Temporal Dynamics of Acute Myeloid Leukemia Progression Using Functional Omics and High-Throughput In Vivo ScreeningThis project aims to explore the spatial and temporal dynamics of tumor progression in Acute Myeloid Leukemia to identify critical factors influencing cancer pathogenicity and potential therapeutic targets. | ERC Consolid... | € 1.994.500 | 2024 | Details |
PLASTicity of Endothelial Cell as new Target for acute myeloId leukemia TherapYThis project aims to investigate embryonic-like endothelial cells in acute myeloid leukemia to identify therapeutic targets that enhance treatment responses and improve patient outcomes. | ERC Starting... | € 1.499.000 | 2024 | Details |
Understanding Diagnosing and Early intervention in the Myeloid malignancy ContinuumThe Shlush lab aims to improve early diagnosis and treatment of myeloid malignancies by developing advanced diagnostic tools, exploring preleukemic mutations, and identifying targeted therapies. | ERC Consolid... | € 2.000.000 | 2025 | Details |
Applying novel single-cell multiomics to elucidate leukaemia cell plasticity in resistance to targeted therapy
This project aims to develop a single-cell multiomics method to understand epigenetic resistance mechanisms in AML, enhancing treatment strategies against drug resistance.
Cancer cell plasticity on targeted therapy
This project aims to develop innovative cancer therapies by analyzing tumor heterogeneity and targeting drug-tolerant persister cells to prevent resistance and improve patient outcomes.
Elucidating the Spatial and Temporal Dynamics of Acute Myeloid Leukemia Progression Using Functional Omics and High-Throughput In Vivo Screening
This project aims to explore the spatial and temporal dynamics of tumor progression in Acute Myeloid Leukemia to identify critical factors influencing cancer pathogenicity and potential therapeutic targets.
PLASTicity of Endothelial Cell as new Target for acute myeloId leukemia TherapY
This project aims to investigate embryonic-like endothelial cells in acute myeloid leukemia to identify therapeutic targets that enhance treatment responses and improve patient outcomes.
Understanding Diagnosing and Early intervention in the Myeloid malignancy Continuum
The Shlush lab aims to improve early diagnosis and treatment of myeloid malignancies by developing advanced diagnostic tools, exploring preleukemic mutations, and identifying targeted therapies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.