Bio-inspired AntiMicrobial Bone BIoceramics: Deciphering contact-based biocidal mechanisms

BAMBBI aims to develop synthetic bone grafts with antimicrobial properties through engineered nanotopography and surface chemistry to enhance bone regeneration and combat bacterial infections.

Subsidie
€ 2.497.334
2022

Projectdetails

Introduction

Bacterial bone infections are one of the great challenges of orthopaedic and maxillofacial surgery, aggravated by antibiotic resistance, a serious health threat responsible for 700,000 deaths per year. The recent discovery of the bactericidal properties of some naturally occurring surface topographies has opened a new avenue of research. However, there is incomplete knowledge of the mechanisms of action and too many unanswered questions to translate these advances into clinical use.

Project Overview

BAMBBI aims to tackle this challenge by developing synthetic bone grafts featuring contact-based antimicrobial properties, adding antimicrobial activity to their capacity to support bone regeneration.

Methodology

Using a novel bottom-up approach inspired by biomineralization routes, I intend to engineer the surface of calcium phosphates with an unprecedented and fine control of nanotopography by harnessing the power of ions and organic molecules, including:

  1. Amino acids
  2. Calcium chelators
  3. Surfactants

These components will drive crystal nucleation and growth.

Enhancing Antimicrobial Effects

Moreover, we will further enhance the antimicrobial effect by exploiting the synergy with chemical moieties to:

  • Modulate bacterial affinity for the surface
  • Confer additional antimicrobial properties by immobilization of antimicrobial peptides

This will provide us with a platform to study the contact-based bactericidal mechanisms in depth and unravel the role of nanotopography and surface chemistry and their interplay with the intrinsic properties of bacteria.

Expected Outcomes

Only considering all these parameters will it be possible to unveil the causes of the substantial differences in bactericidal efficacy of a given substrate for different bacteria and design more efficient antibacterial surfaces.

In addition to being a major breakthrough in the field of bone regeneration, the progress in new methods of fine-tuning the nanostructure of calcium phosphates will have an impact in very diverse fields such as:

  • Catalysis
  • Water purification
  • Protein separation

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.497.334
Totale projectbegroting€ 2.497.334

Tijdlijn

Startdatum1-12-2022
Einddatum30-11-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UNIVERSITAT POLITECNICA DE CATALUNYApenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regeneration

Nano4Bone aims to engineer self-healing hydrogels with enhanced mechanical properties and bioactive nanoparticles for effective bone tissue regeneration in osteosarcoma treatment.

€ 2.000.000
ERC Consolid...

Bioinspired living skin for architecture

The ARCHI-SKIN project aims to develop a bioactive protective coating using fungal biofilms to enhance the durability and functionality of various materials through innovative design and in-situ methods.

€ 1.999.000
ERC Proof of...

Self-feeding implants to improve and accelerate tissue healing using nutritional nanoparticles

The NutriBone project aims to develop a patented self-feeding bone implant that enhances long-term viability and reduces failure rates for large bone defects through glycogen-based glucose release.

€ 150.000
ERC Advanced...

Bacteriocins from interbacterial warfare as antibiotic alternative

BACtheWINNER aims to develop novel antimicrobials from bacteriocins through advanced bioengineering and molecular genetics to combat antimicrobial resistance and improve human and animal health.

€ 2.500.000
ERC Starting...

Supramolecular Self-Replicating Antimicrobials

This project develops self-replicating supramolecular antimicrobial agents that target bacterial membranes, enhancing therapeutic efficacy through cooperative self-assembly and autocatalysis.

€ 1.499.496

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Bacteria Biofilm as bio-factory for tissue regeneration

BIOACTION aims to transform biofilm-associated infections into a resource for tissue regeneration using functionalized bio-hydrogels and engineered liposomes, enhancing implant technology and health outcomes.

€ 2.903.862
Mkb-innovati...

Ceramic paste for 3D-printable bone implants

Z3DLABS en Delft Solids Solutions ontwikkelen een 3D printbare keramische pasta voor patiëntspecifieke, bio-compatibele botimplantaten met een langere levensduur en lagere behandelkosten.

€ 195.510
Mkb-innovati...

Ultra-tunable and Bio-stable Antibacterial Coating (UBAC)

Preimure ontwikkelt een innovatieve antibacteriële coating voor implantaten om infecties te voorkomen, revisieoperaties te verminderen en de zorgkosten te verlagen.

€ 20.000
Mkb-innovati...

Ontwikkeling van een nieuwe methode voor sterilisatie van medical devices met actieve componenten.

Het project ontwikkelt een innovatieve sterilisatiemethode op basis van superkritisch koolstofdioxide voor medische hulpmiddelen met actieve componenten, ter verbetering van veiligheid en effectiviteit.

€ 339.395
EIC Pathfinder

Advanced nanomaterials to target genomic and Z-DNA for bacterial biofilm eradication

BactEradiX aims to create a novel antimicrobial nanomaterial targeting biofilm Z-DNA to effectively eradicate chronic infections caused by drug-resistant bacteria.

€ 2.996.312