Bio-inspired AntiMicrobial Bone BIoceramics: Deciphering contact-based biocidal mechanisms
BAMBBI aims to develop synthetic bone grafts with antimicrobial properties through engineered nanotopography and surface chemistry to enhance bone regeneration and combat bacterial infections.
Projectdetails
Introduction
Bacterial bone infections are one of the great challenges of orthopaedic and maxillofacial surgery, aggravated by antibiotic resistance, a serious health threat responsible for 700,000 deaths per year. The recent discovery of the bactericidal properties of some naturally occurring surface topographies has opened a new avenue of research. However, there is incomplete knowledge of the mechanisms of action and too many unanswered questions to translate these advances into clinical use.
Project Overview
BAMBBI aims to tackle this challenge by developing synthetic bone grafts featuring contact-based antimicrobial properties, adding antimicrobial activity to their capacity to support bone regeneration.
Methodology
Using a novel bottom-up approach inspired by biomineralization routes, I intend to engineer the surface of calcium phosphates with an unprecedented and fine control of nanotopography by harnessing the power of ions and organic molecules, including:
- Amino acids
- Calcium chelators
- Surfactants
These components will drive crystal nucleation and growth.
Enhancing Antimicrobial Effects
Moreover, we will further enhance the antimicrobial effect by exploiting the synergy with chemical moieties to:
- Modulate bacterial affinity for the surface
- Confer additional antimicrobial properties by immobilization of antimicrobial peptides
This will provide us with a platform to study the contact-based bactericidal mechanisms in depth and unravel the role of nanotopography and surface chemistry and their interplay with the intrinsic properties of bacteria.
Expected Outcomes
Only considering all these parameters will it be possible to unveil the causes of the substantial differences in bactericidal efficacy of a given substrate for different bacteria and design more efficient antibacterial surfaces.
In addition to being a major breakthrough in the field of bone regeneration, the progress in new methods of fine-tuning the nanostructure of calcium phosphates will have an impact in very diverse fields such as:
- Catalysis
- Water purification
- Protein separation
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.497.334 |
Totale projectbegroting | € 2.497.334 |
Tijdlijn
Startdatum | 1-12-2022 |
Einddatum | 30-11-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITAT POLITECNICA DE CATALUNYApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regenerationNano4Bone aims to engineer self-healing hydrogels with enhanced mechanical properties and bioactive nanoparticles for effective bone tissue regeneration in osteosarcoma treatment. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Bioinspired living skin for architectureThe ARCHI-SKIN project aims to develop a bioactive protective coating using fungal biofilms to enhance the durability and functionality of various materials through innovative design and in-situ methods. | ERC Consolid... | € 1.999.000 | 2022 | Details |
Self-feeding implants to improve and accelerate tissue healing using nutritional nanoparticlesThe NutriBone project aims to develop a patented self-feeding bone implant that enhances long-term viability and reduces failure rates for large bone defects through glycogen-based glucose release. | ERC Proof of... | € 150.000 | 2024 | Details |
Bacteriocins from interbacterial warfare as antibiotic alternativeBACtheWINNER aims to develop novel antimicrobials from bacteriocins through advanced bioengineering and molecular genetics to combat antimicrobial resistance and improve human and animal health. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Supramolecular Self-Replicating AntimicrobialsThis project develops self-replicating supramolecular antimicrobial agents that target bacterial membranes, enhancing therapeutic efficacy through cooperative self-assembly and autocatalysis. | ERC Starting... | € 1.499.496 | 2025 | Details |
Engineering nanoparticle-polymer interactions to create instructive, tough nanocomposite hydrogels without negatively impacting self-healing behavior for bone tissue regeneration
Nano4Bone aims to engineer self-healing hydrogels with enhanced mechanical properties and bioactive nanoparticles for effective bone tissue regeneration in osteosarcoma treatment.
Bioinspired living skin for architecture
The ARCHI-SKIN project aims to develop a bioactive protective coating using fungal biofilms to enhance the durability and functionality of various materials through innovative design and in-situ methods.
Self-feeding implants to improve and accelerate tissue healing using nutritional nanoparticles
The NutriBone project aims to develop a patented self-feeding bone implant that enhances long-term viability and reduces failure rates for large bone defects through glycogen-based glucose release.
Bacteriocins from interbacterial warfare as antibiotic alternative
BACtheWINNER aims to develop novel antimicrobials from bacteriocins through advanced bioengineering and molecular genetics to combat antimicrobial resistance and improve human and animal health.
Supramolecular Self-Replicating Antimicrobials
This project develops self-replicating supramolecular antimicrobial agents that target bacterial membranes, enhancing therapeutic efficacy through cooperative self-assembly and autocatalysis.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bacteria Biofilm as bio-factory for tissue regenerationBIOACTION aims to transform biofilm-associated infections into a resource for tissue regeneration using functionalized bio-hydrogels and engineered liposomes, enhancing implant technology and health outcomes. | EIC Pathfinder | € 2.903.862 | 2023 | Details |
Ceramic paste for 3D-printable bone implantsZ3DLABS en Delft Solids Solutions ontwikkelen een 3D printbare keramische pasta voor patiëntspecifieke, bio-compatibele botimplantaten met een langere levensduur en lagere behandelkosten. | Mkb-innovati... | € 195.510 | 2020 | Details |
Ultra-tunable and Bio-stable Antibacterial Coating (UBAC)Preimure ontwikkelt een innovatieve antibacteriële coating voor implantaten om infecties te voorkomen, revisieoperaties te verminderen en de zorgkosten te verlagen. | Mkb-innovati... | € 20.000 | 2022 | Details |
Ontwikkeling van een nieuwe methode voor sterilisatie van medical devices met actieve componenten.Het project ontwikkelt een innovatieve sterilisatiemethode op basis van superkritisch koolstofdioxide voor medische hulpmiddelen met actieve componenten, ter verbetering van veiligheid en effectiviteit. | Mkb-innovati... | € 339.395 | 2015 | Details |
Advanced nanomaterials to target genomic and Z-DNA for bacterial biofilm eradicationBactEradiX aims to create a novel antimicrobial nanomaterial targeting biofilm Z-DNA to effectively eradicate chronic infections caused by drug-resistant bacteria. | EIC Pathfinder | € 2.996.312 | 2024 | Details |
Bacteria Biofilm as bio-factory for tissue regeneration
BIOACTION aims to transform biofilm-associated infections into a resource for tissue regeneration using functionalized bio-hydrogels and engineered liposomes, enhancing implant technology and health outcomes.
Ceramic paste for 3D-printable bone implants
Z3DLABS en Delft Solids Solutions ontwikkelen een 3D printbare keramische pasta voor patiëntspecifieke, bio-compatibele botimplantaten met een langere levensduur en lagere behandelkosten.
Ultra-tunable and Bio-stable Antibacterial Coating (UBAC)
Preimure ontwikkelt een innovatieve antibacteriële coating voor implantaten om infecties te voorkomen, revisieoperaties te verminderen en de zorgkosten te verlagen.
Ontwikkeling van een nieuwe methode voor sterilisatie van medical devices met actieve componenten.
Het project ontwikkelt een innovatieve sterilisatiemethode op basis van superkritisch koolstofdioxide voor medische hulpmiddelen met actieve componenten, ter verbetering van veiligheid en effectiviteit.
Advanced nanomaterials to target genomic and Z-DNA for bacterial biofilm eradication
BactEradiX aims to create a novel antimicrobial nanomaterial targeting biofilm Z-DNA to effectively eradicate chronic infections caused by drug-resistant bacteria.