Analysis of Biofilm Solid Interactions Underpinning Wastewater Treatment
This project aims to enhance wastewater treatment efficiency by developing a novel multispecies biofilm model that leverages advanced imaging and nanosensors to improve particle-biofilm interactions.
Projectdetails
Introduction
Wastewater treatment (WWT) processes that use biofilms as their biocatalyst have been in use for over 100 years. Over the past few decades, a greater understanding has emerged on how biofilms can be exploited for enhanced nutrient removal. This knowledge has been translated into new technologies representing about one-third of all WWT processes in a multibillion-euro global wastewater technology market.
Need for Enhanced Efficiencies
Despite the success of these technologies, there is a significant need for enhanced efficiencies in these processes. The development of new technologies that are more energy efficient and capable of better resource recovery from wastewater is essential.
To achieve this, there is a need for new mechanistic insight, particularly regarding the interaction between biofilms and particulate organic matter in the influent wastewater. The knowledge gap spans three key areas:
- Non-oxidative interactions
- Hydrolysis
- Bioflocculation
Research Objectives
This research project will develop an enhanced multispecies biofilm model that better incorporates new understanding of these areas. We will go significantly beyond the current state of the art by first building an experimental platform that exploits recent developments in advanced imaging, nanosensors, and particle-tracking to probe the fundamentals of these mechanisms.
To achieve this, the platform will be uniquely based on fluorescently tagged monospecies biofilms, rather than on conventional multispecies biofilms in the first phase of the project. This work will then inform the development of new mathematical model relationships, which will be implemented in an extended multispecies model and validated against data from a pilot plant operating under conditions representative of a real WWT plant.
Expected Outcomes
The transformative approach in this project will lead to a more fundamental insight into the mechanisms underpinning particle-biofilm interactions. It will also pave the way for new applications of biofilms for advanced wastewater treatment.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.496.268 |
Totale projectbegroting | € 2.496.268 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Accelerating biofilm Matrix dispersion with Deep Eutectic SolventsThis project aims to develop and commercialize a sustainable NADES-based solution for biofouling mitigation in water treatment, outperforming existing products in safety and effectiveness. | ERC Proof of... | € 150.000 | 2024 | Details |
Bioinspired living skin for architectureThe ARCHI-SKIN project aims to develop a bioactive protective coating using fungal biofilms to enhance the durability and functionality of various materials through innovative design and in-situ methods. | ERC Consolid... | € 1.999.000 | 2022 | Details |
Exploitation of extreme cavitation conditions for wastewater treatmentCAVIPHY aims to enhance wastewater treatment by using a cavitation device to pre-treat waste activated sludge, reducing costs and environmental impact while generating renewable bioenergy. | ERC Proof of... | € 150.000 | 2022 | Details |
Understanding The Fluid Mechanics of Algal Bloom Across ScalesThis project aims to predict and mitigate Cyanobacterial blooms through multiscale experiments and simulations, enhancing understanding of their rheological and fluid dynamics properties. | ERC Starting... | € 1.499.838 | 2024 | Details |
Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking waterThis project aims to develop scalable charge-mosaic membranes using polyelectrolyte multilayers to efficiently remove organic micropollutants from water while minimizing energy use and waste. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Accelerating biofilm Matrix dispersion with Deep Eutectic Solvents
This project aims to develop and commercialize a sustainable NADES-based solution for biofouling mitigation in water treatment, outperforming existing products in safety and effectiveness.
Bioinspired living skin for architecture
The ARCHI-SKIN project aims to develop a bioactive protective coating using fungal biofilms to enhance the durability and functionality of various materials through innovative design and in-situ methods.
Exploitation of extreme cavitation conditions for wastewater treatment
CAVIPHY aims to enhance wastewater treatment by using a cavitation device to pre-treat waste activated sludge, reducing costs and environmental impact while generating renewable bioenergy.
Understanding The Fluid Mechanics of Algal Bloom Across Scales
This project aims to predict and mitigate Cyanobacterial blooms through multiscale experiments and simulations, enhancing understanding of their rheological and fluid dynamics properties.
Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking water
This project aims to develop scalable charge-mosaic membranes using polyelectrolyte multilayers to efficiently remove organic micropollutants from water while minimizing energy use and waste.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Onderzoek ontwikkeling effectieve microfouling bestrijdingsmethodiek in een open recirculatie koelwater testsysteemSpecial Water Europe ontwikkelt een effectieve methodiek om biofilms in open recirculatie koelwatersystemen te destabiliseren en te bestrijden met een combinatie van producten en biocides. | Mkb-innovati... | € 52.311 | 2019 | Details |
Biocatalytic membranes for micro/nano plastic degradation within waste water effluentsBMRex aims to develop a novel biocatalyst-based membrane reactor technology for efficient removal and degradation of micro/nano-plastics from wastewater, promoting sustainable plastic recycling. | EIC Pathfinder | € 3.638.501 | 2023 | Details |
A Holistic Approach towards onsite hospital wastewater treatmentThe project aims to evaluate the efficiency of the HIPPOCRATEs’ eco-technologies for on-site treatment of hospital wastewater to reduce contaminants before entering sewage systems across Europe. | LIFE Standar... | € 1.820.946 | 2023 | Details |
Energiebesparing en CO2 reductie bij circulaire zuivering afvalwaterHet project ontwikkelt een innovatieve technologie voor de terugwinning van ammonium uit afvalwater, gericht op CO2-reductie en marktintroductie binnen vier jaar. | Demonstratie... | € 815.854 | 2021 | Details |
TUNGSTEN BIOCATALYSIS – HEAVY METAL ENZYMES FOR SUSTAINABLE INDUSTRIAL BIOCATALYSISThis project aims to develop a new W-cofactor biosynthesis pathway in E. coli to produce tungsten-containing enzymes for sustainable chemical processes, enabling efficient CO2 reduction and cosmetic ingredient production. | EIC Pathfinder | € 2.430.574 | 2024 | Details |
Onderzoek ontwikkeling effectieve microfouling bestrijdingsmethodiek in een open recirculatie koelwater testsysteem
Special Water Europe ontwikkelt een effectieve methodiek om biofilms in open recirculatie koelwatersystemen te destabiliseren en te bestrijden met een combinatie van producten en biocides.
Biocatalytic membranes for micro/nano plastic degradation within waste water effluents
BMRex aims to develop a novel biocatalyst-based membrane reactor technology for efficient removal and degradation of micro/nano-plastics from wastewater, promoting sustainable plastic recycling.
A Holistic Approach towards onsite hospital wastewater treatment
The project aims to evaluate the efficiency of the HIPPOCRATEs’ eco-technologies for on-site treatment of hospital wastewater to reduce contaminants before entering sewage systems across Europe.
Energiebesparing en CO2 reductie bij circulaire zuivering afvalwater
Het project ontwikkelt een innovatieve technologie voor de terugwinning van ammonium uit afvalwater, gericht op CO2-reductie en marktintroductie binnen vier jaar.
TUNGSTEN BIOCATALYSIS – HEAVY METAL ENZYMES FOR SUSTAINABLE INDUSTRIAL BIOCATALYSIS
This project aims to develop a new W-cofactor biosynthesis pathway in E. coli to produce tungsten-containing enzymes for sustainable chemical processes, enabling efficient CO2 reduction and cosmetic ingredient production.