An integrative genetic approach for the exploration of melanoma immunological interactions
This project aims to enhance cancer vaccine efficacy by systematically analyzing the immunopeptidome in melanoma to identify actionable neopeptides and their impact on immune responses.
Projectdetails
Introduction
Immunotherapy, which has revolutionized cancer treatment, largely relies on the immune system’s recognition of neopeptides, degradation products of altered proteins specific to cancer cells presented on their surface. In particular, cancer vaccines targeting neopeptides have shown promising clinical results.
Research Objectives
Yet, to optimize their efficacy and broaden their application, we need to decipher the nature of the cancer peptide landscape (immunopeptidome) and delineate the neopeptide properties required to induce a potent immune response. The overarching goal of this proposal is to provide an unprecedented, thorough, multifaceted understanding of the mechanisms underlying aberrant peptide production, peptide-MHC presentation, and T-cell recognition in melanoma.
Key Avenues of Research
We will do so by pursuing three key avenues:
- Systematic interrogation of the cancer immunopeptidome to identify novel canonical and non-canonical cancer antigens and quantify their presentation (Aim 1).
- Comprehensive functional assessment of the intrinsic qualities of actionable antigens by quantitatively charting the immunopeptidome in-vivo, while considering peptide presentation levels, clonality, and cross-presentation; and delineating how these neoantigen qualities impact the immune response (Aim 2).
- Establish controlled in-vivo models to tease apart neoantigen qualities for the establishment of rational cancer vaccine modalities (Aim 3).
Methodology
In this effort, we will draw upon our pioneering tools and advanced mapping of the cancer peptidome in melanoma, which has already revealed novel antigenic sources. Our research approach combines:
- Comprehensive quantitative immunopeptidomics
- Novel imaging and computational approaches
- Advanced functional assays
- Novel mouse models
Expected Outcomes
Our project will provide a fresh view of melanoma-immune interactions, new research tools and pipelines, cancer-specific antigen targets for immunotherapy, and, more broadly, a paradigm for addressing similarly complex questions in other cancers.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 2.500.000 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- WEIZMANN INSTITUTE OF SCIENCEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Melanosomes as cancer immune modulators: a novel paradigm in melanoma immunityThis project aims to explore melanosomes' role in melanoma immunity to uncover new therapeutic strategies for treatment-resistant patients and enhance understanding of immune interactions. | ERC Advanced... | € 2.515.625 | 2024 | Details |
Targeting the vascular-immune interface to induce anti-tumor immunityThis project aims to enhance cancer immunotherapy by characterizing the vascular-immune interface in melanoma and glioblastoma to optimize immune responses through targeted therapeutic induction. | ERC Synergy ... | € 9.453.750 | 2025 | Details |
Modular Targeted Nanoplatform for Immune Cell Regulation and TherapyImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative. | ERC Proof of... | € 150.000 | 2023 | Details |
Molecular mimicry as a key parameter shaping T cell immunityThe MIMIC project aims to explore molecular mimicry's role in T cell recognition to enhance cancer immunotherapy by optimizing antigen selection based on pre-existing immunity insights. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Targeted Immunocytokines by CaGing and local ReleaseThis project aims to develop and evaluate a novel, locally activated innate immune therapy for cancer that minimizes systemic toxicity while enhancing treatment efficacy. | ERC Proof of... | € 150.000 | 2025 | Details |
Melanosomes as cancer immune modulators: a novel paradigm in melanoma immunity
This project aims to explore melanosomes' role in melanoma immunity to uncover new therapeutic strategies for treatment-resistant patients and enhance understanding of immune interactions.
Targeting the vascular-immune interface to induce anti-tumor immunity
This project aims to enhance cancer immunotherapy by characterizing the vascular-immune interface in melanoma and glioblastoma to optimize immune responses through targeted therapeutic induction.
Modular Targeted Nanoplatform for Immune Cell Regulation and Therapy
ImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative.
Molecular mimicry as a key parameter shaping T cell immunity
The MIMIC project aims to explore molecular mimicry's role in T cell recognition to enhance cancer immunotherapy by optimizing antigen selection based on pre-existing immunity insights.
Targeted Immunocytokines by CaGing and local Release
This project aims to develop and evaluate a novel, locally activated innate immune therapy for cancer that minimizes systemic toxicity while enhancing treatment efficacy.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineeringThe project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer. | EIC Accelerator | € 2.434.790 | 2025 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.
Novel peptide-based therapeutics for reprogramming the tumour stroma extracellular matrix using molecular modelling and computational engineering
The project aims to develop TAX2, a novel peptide therapy targeting the tumor microenvironment to inhibit solid tumor progression and enhance immunotherapy efficacy, with a focus on ovarian cancer.