Thermite reactions assisting satellite demise

This project aims to advance thermite-for-demise (T4D) technology for satellite decommissioning by developing new materials and devices, validating their performance, and analyzing cost-effectiveness for industry adoption.

Subsidie
€ 2.919.176
2025

Projectdetails

Introduction

This project develops a new method to manage the decommissioning of satellites through the use of on-board heat generation systems based on non-explosive thermite charges, called thermite-for-demise (T4D).

Background

Thermites are mixtures of metal and metal oxide which can undergo spontaneous exothermic reactions even in vacuum, according to composition and production. Pioneering projects have demonstrated that T4D may be used to damage space components and support their demise during atmospheric reentry.

Challenges

However, its real-world application needs the filling of knowledge gaps and practical problems:

  1. The powdered form is not the best way to obtain localized reliable heat release.
  2. The expected life cycle in a space mission has never been considered.
  3. A strategy for T4D use is not available.

Project Goals

The project targets the maturation of T4D technology in three major steps:

  1. Development of New Materials: New thermite-based composite materials granting thermite a structural consistency will be developed and their behavior characterized. Environmental stress tests will secure their use across the satellite lifecycle.

  2. Heat-Generating Devices: With these building blocks, heat-generating shapes and devices will be developed, supported by the experience of a large spacecraft integrator. The heat transfer behavior of thermite-based objects will be modeled and validated under representative reentry conditions, in a hypersonic wind tunnel. Results will support the update of system-level reentry simulation tools and the definition of application strategy, further validated on demise tests in a wind tunnel with hardware of representative or simplified geometry from the selected use cases, supplied by a space company.

  3. Cost-Benefit Analysis: All previous outcomes will support a cost-benefit analysis for T4D industrial implementation and its long-term evolution.

Conclusion

The results of the project will demonstrate with new experiments and modeling approaches that T4D has the potential to become an engineering standard for the space community.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.919.176
Totale projectbegroting€ 2.919.176

Tijdlijn

Startdatum1-5-2025
Einddatum31-10-2028
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • POLITECNICO DI MILANOpenvoerder
  • CEIIA - CENTRO DE ENGENHARIA E DESENVOLVIMENTO (ASSOCIACAO)
  • HTG - Hyperschall Techologie Göttigen GmbH
  • UNIVERSITE JEAN MONNET
  • R.TECH
  • ReActive Powder Technology SRL
  • AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE
  • AIRBUS DEFENCE AND SPACE GMBH
  • DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV

Land(en)

ItalyPortugalGermanyFrance

Vergelijkbare projecten binnen EIC Pathfinder

EIC Pathfinder

A paradigm shift for the future's thermal management devices through radical innovation in new materials and additive manufacturing

ThermoDust aims to revolutionize thermal management by developing a novel material using nanotechnology and additive manufacturing for enhanced heat transport in electronics, EVs, and aerospace.

€ 3.275.985
EIC Pathfinder

Metallic phase change material-composites for Thermal Energy management

The M-TES project aims to develop low-cost, tailored metallic Phase Change Materials for efficient thermal energy storage using recycled alloys, enhancing flexibility in renewable energy systems.

€ 2.347.916
EIC Pathfinder

For Tunable Thermochemical Energy Storage

4TunaTES aims to develop a flexible Thermo-Chemical Energy Storage technology that adapts to various applications, reducing R&D costs by 90% and unlocking thermal energy storage potential.

€ 2.779.713
EIC Pathfinder

Bimodal Ammonia Nuclear Thermal and Electric Rocket

BANTER aims to develop a compact bimodal nuclear thermal and electric propulsion system using ammonia, enhancing space mission capabilities and advancing green hydrogen production.

€ 2.997.300
EIC Pathfinder

COMPACT AND PROPELLANT-LESS ELECTRODYNAMIC TETHER SYSTEM BASED ON IN-SPACE SOLAR ENERGY

E.T.COMPACT aims to advance three in-space technologies for solar energy harvesting and green propulsion, enhancing efficiency and reducing costs for future space missions.

€ 3.972.890

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

T-Prime

T-Minus ontwikkelt een hypersone sondeerraket met hittebestendige composieten voor extreme temperaturen, gericht op diverse toepassingen binnen de ruimtevaartsector.

€ 199.150
EIC Transition

A Ready-to-Fly Deorbit Device Based on Electrodynamic Tether Technology

The E.T.PACK-F project aims to develop and demonstrate a ready-to-fly electrodynamic tether Deorbit Device to enhance spacecraft operations and commercialize innovative tether technologies.

€ 2.499.513
Mkb-innovati...

Hergebruik en hoogwaardige recyclage voor vezelversterkte thermoharders

Het project onderzoekt de haalbaarheid van hergebruik en recycling van thermohardend composiet voor duurzame toepassingen en vermindering van afval.

€ 20.000
Missiegedrev...

CIRCular gLass fibre rEcycling solution for offshore WINd turbine blades

CIRCLE4WIN ontwikkelt een kosteneffectieve circulaire oplossing voor recycling van glasvezel in windturbinebladen via thermolyse, met focus op duurzaamheid en traceerbaarheid binnen 5 jaar.

€ 2.060.732
Mkb-innovati...

ThermaWing

Revolv ontwikkelt ThermaWing, een kosteneffectieve uitklapbare radiator voor CubeSats, om de thermische prestaties te verbeteren en de commerciële haalbaarheid te valideren.

€ 20.000