Thermite reactions assisting satellite demise
This project aims to advance thermite-for-demise (T4D) technology for satellite decommissioning by developing new materials and devices, validating their performance, and analyzing cost-effectiveness for industry adoption.
Projectdetails
Introduction
This project develops a new method to manage the decommissioning of satellites through the use of on-board heat generation systems based on non-explosive thermite charges, called thermite-for-demise (T4D).
Background
Thermites are mixtures of metal and metal oxide which can undergo spontaneous exothermic reactions even in vacuum, according to composition and production. Pioneering projects have demonstrated that T4D may be used to damage space components and support their demise during atmospheric reentry.
Challenges
However, its real-world application needs the filling of knowledge gaps and practical problems:
- The powdered form is not the best way to obtain localized reliable heat release.
- The expected life cycle in a space mission has never been considered.
- A strategy for T4D use is not available.
Project Goals
The project targets the maturation of T4D technology in three major steps:
-
Development of New Materials: New thermite-based composite materials granting thermite a structural consistency will be developed and their behavior characterized. Environmental stress tests will secure their use across the satellite lifecycle.
-
Heat-Generating Devices: With these building blocks, heat-generating shapes and devices will be developed, supported by the experience of a large spacecraft integrator. The heat transfer behavior of thermite-based objects will be modeled and validated under representative reentry conditions, in a hypersonic wind tunnel. Results will support the update of system-level reentry simulation tools and the definition of application strategy, further validated on demise tests in a wind tunnel with hardware of representative or simplified geometry from the selected use cases, supplied by a space company.
-
Cost-Benefit Analysis: All previous outcomes will support a cost-benefit analysis for T4D industrial implementation and its long-term evolution.
Conclusion
The results of the project will demonstrate with new experiments and modeling approaches that T4D has the potential to become an engineering standard for the space community.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.919.176 |
Totale projectbegroting | € 2.919.176 |
Tijdlijn
Startdatum | 1-5-2025 |
Einddatum | 31-10-2028 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- POLITECNICO DI MILANOpenvoerder
- CEIIA - CENTRO DE ENGENHARIA E DESENVOLVIMENTO (ASSOCIACAO)
- HTG - Hyperschall Techologie Göttigen GmbH
- UNIVERSITE JEAN MONNET
- R.TECH
- ReActive Powder Technology SRL
- AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE
- AIRBUS DEFENCE AND SPACE GMBH
- DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A paradigm shift for the future's thermal management devices through radical innovation in new materials and additive manufacturingThermoDust aims to revolutionize thermal management by developing a novel material using nanotechnology and additive manufacturing for enhanced heat transport in electronics, EVs, and aerospace. | EIC Pathfinder | € 3.275.985 | 2022 | Details |
Metallic phase change material-composites for Thermal Energy managementThe M-TES project aims to develop low-cost, tailored metallic Phase Change Materials for efficient thermal energy storage using recycled alloys, enhancing flexibility in renewable energy systems. | EIC Pathfinder | € 2.347.916 | 2023 | Details |
For Tunable Thermochemical Energy Storage4TunaTES aims to develop a flexible Thermo-Chemical Energy Storage technology that adapts to various applications, reducing R&D costs by 90% and unlocking thermal energy storage potential. | EIC Pathfinder | € 2.779.713 | 2024 | Details |
Bimodal Ammonia Nuclear Thermal and Electric RocketBANTER aims to develop a compact bimodal nuclear thermal and electric propulsion system using ammonia, enhancing space mission capabilities and advancing green hydrogen production. | EIC Pathfinder | € 2.997.300 | 2025 | Details |
COMPACT AND PROPELLANT-LESS ELECTRODYNAMIC TETHER SYSTEM BASED ON IN-SPACE SOLAR ENERGYE.T.COMPACT aims to advance three in-space technologies for solar energy harvesting and green propulsion, enhancing efficiency and reducing costs for future space missions. | EIC Pathfinder | € 3.972.890 | 2024 | Details |
A paradigm shift for the future's thermal management devices through radical innovation in new materials and additive manufacturing
ThermoDust aims to revolutionize thermal management by developing a novel material using nanotechnology and additive manufacturing for enhanced heat transport in electronics, EVs, and aerospace.
Metallic phase change material-composites for Thermal Energy management
The M-TES project aims to develop low-cost, tailored metallic Phase Change Materials for efficient thermal energy storage using recycled alloys, enhancing flexibility in renewable energy systems.
For Tunable Thermochemical Energy Storage
4TunaTES aims to develop a flexible Thermo-Chemical Energy Storage technology that adapts to various applications, reducing R&D costs by 90% and unlocking thermal energy storage potential.
Bimodal Ammonia Nuclear Thermal and Electric Rocket
BANTER aims to develop a compact bimodal nuclear thermal and electric propulsion system using ammonia, enhancing space mission capabilities and advancing green hydrogen production.
COMPACT AND PROPELLANT-LESS ELECTRODYNAMIC TETHER SYSTEM BASED ON IN-SPACE SOLAR ENERGY
E.T.COMPACT aims to advance three in-space technologies for solar energy harvesting and green propulsion, enhancing efficiency and reducing costs for future space missions.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
T-PrimeT-Minus ontwikkelt een hypersone sondeerraket met hittebestendige composieten voor extreme temperaturen, gericht op diverse toepassingen binnen de ruimtevaartsector. | Mkb-innovati... | € 199.150 | 2019 | Details |
A Ready-to-Fly Deorbit Device Based on Electrodynamic Tether TechnologyThe E.T.PACK-F project aims to develop and demonstrate a ready-to-fly electrodynamic tether Deorbit Device to enhance spacecraft operations and commercialize innovative tether technologies. | EIC Transition | € 2.499.513 | 2022 | Details |
Hergebruik en hoogwaardige recyclage voor vezelversterkte thermohardersHet project onderzoekt de haalbaarheid van hergebruik en recycling van thermohardend composiet voor duurzame toepassingen en vermindering van afval. | Mkb-innovati... | € 20.000 | 2020 | Details |
CIRCular gLass fibre rEcycling solution for offshore WINd turbine bladesCIRCLE4WIN ontwikkelt een kosteneffectieve circulaire oplossing voor recycling van glasvezel in windturbinebladen via thermolyse, met focus op duurzaamheid en traceerbaarheid binnen 5 jaar. | Missiegedrev... | € 2.060.732 | 2025 | Details |
ThermaWingRevolv ontwikkelt ThermaWing, een kosteneffectieve uitklapbare radiator voor CubeSats, om de thermische prestaties te verbeteren en de commerciële haalbaarheid te valideren. | Mkb-innovati... | € 20.000 | 2023 | Details |
T-Prime
T-Minus ontwikkelt een hypersone sondeerraket met hittebestendige composieten voor extreme temperaturen, gericht op diverse toepassingen binnen de ruimtevaartsector.
A Ready-to-Fly Deorbit Device Based on Electrodynamic Tether Technology
The E.T.PACK-F project aims to develop and demonstrate a ready-to-fly electrodynamic tether Deorbit Device to enhance spacecraft operations and commercialize innovative tether technologies.
Hergebruik en hoogwaardige recyclage voor vezelversterkte thermoharders
Het project onderzoekt de haalbaarheid van hergebruik en recycling van thermohardend composiet voor duurzame toepassingen en vermindering van afval.
CIRCular gLass fibre rEcycling solution for offshore WINd turbine blades
CIRCLE4WIN ontwikkelt een kosteneffectieve circulaire oplossing voor recycling van glasvezel in windturbinebladen via thermolyse, met focus op duurzaamheid en traceerbaarheid binnen 5 jaar.
ThermaWing
Revolv ontwikkelt ThermaWing, een kosteneffectieve uitklapbare radiator voor CubeSats, om de thermische prestaties te verbeteren en de commerciële haalbaarheid te valideren.