Quantum Microwave Detection with Diamond Spins
QuMicro aims to develop advanced quantum microwave detection devices with ultrahigh sensitivity and resolution, enabling rapid measurements for diverse applications and commercial scalability.
Projectdetails
Introduction
Microwave detection is one of the most widely spread technologies in our society, spanning across areas as diverse as telecommunications, computers, radio-astronomy, navigation and air traffic control, spectroscopy, and medical diagnostics.
Emerging Applications
In this proposal, we address emerging and advanced microwave (MW) applications that start from the same basis – a need for ultrasensitive detection with a high spectral resolution, and, in addition, requesting portable integrated instruments. Emerging quantum technology devices acting as sensors can lead to a major breakthrough in the application field through high sensitivity and frequency resolution.
Project Overview
In QuMicro, we propose to develop a quantum technology for the next generation of microwave detection devices, surpassing the capabilities of all currently available methods. The devices will enable the rapid measurement of the frequency, amplitude, and phase of microwave fields.
Technical Achievements
We will achieve extremely fast (nanosecond-scale) transient detection, a broad detection range spanning tens of gigahertz, and parts-per-million frequency resolution with ultrahigh sensitivity. The QuMicro system is based on a novel detection scheme and on the pioneering innovation concept of photoelectrically detected magnetic resonance with nitrogen-vacancy colour centre qubits in diamond, as a highly performant platform for microwave signal detection at room temperature.
Development Framework
We will start our developments from a theoretical framework for quantum microwave sensing protocols and devices, leveraging schemes based on many-body quantum correlations, implemented in QuMicro engineered devices.
Collaboration and Compatibility
To achieve these goals, QuMicro will connect with scientists and engineers across a broad range of topics. The photoelectrical readout guarantees compatibility with scalable semiconductor electronics, providing a direct outlook towards commercial applications and a science-to-technology leap for microwave sensors with unrivalled performance.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.914.056 |
Totale projectbegroting | € 2.914.056 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 30-9-2025 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUMpenvoerder
- THALES
- BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
- UNIVERSITAET ULM
- UNIVERSITAT WIEN
- OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with LightCIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications. | EIC Pathfinder | € 2.548.532 | 2024 | Details |
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin SystemsThis project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets. | EIC Pathfinder | € 2.994.409 | 2023 | Details |
Quantum reservoir computing for efficient signal processingThe QRC-4-ESP project aims to develop the first quantum reservoir computing systems using superconducting and SiC defect qubits to revolutionize quantum communication and sensing with significant performance gains. | EIC Pathfinder | € 2.522.411 | 2024 | Details |
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with Light
CIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications.
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.
Quantum reservoir computing for efficient signal processing
The QRC-4-ESP project aims to develop the first quantum reservoir computing systems using superconducting and SiC defect qubits to revolutionize quantum communication and sensing with significant performance gains.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
sINGle microwave photon dEtection for hybrid quaNtum Information prOcessing and quantUm enhanced SensingThis project aims to enhance single microwave photon detection to explore new luminescent systems, focusing on quantum computing, sensing applications, and dark-matter candidates. | ERC Starting... | € 1.840.536 | 2022 | Details |
Developing First-in-Class Diamond-based Quantum Microscopy for immediate semiconductor industry applicationsQuantumDiamonds is developing a Super-resolution Quantum Imager for the semiconductor industry to achieve sub-100 nm imaging resolution and rapid diagnostics for chip defects, aiming for commercialization. | EIC Accelerator | € 2.475.229 | 2024 | Details |
Microwave Quantum Photonics for Quantum Technology and Fundamental PhysicsThe project aims to develop advanced microwave photodetectors for high-resolution photon counting, enabling groundbreaking single-photon experiments and insights into quantum technology and many-body physics. | ERC Consolid... | € 2.533.247 | 2023 | Details |
Atomic Scale Quantum Sensing and Information with Molecular Nanostructures on a Scanning Probe TipQuSINT aims to develop a mobile spin-qubit sensor using single electron spins for atomic-scale quantum measurements, enhancing solid-state quantum technology applications. | ERC Starting... | € 1.461.424 | 2025 | Details |
Circuit Quantum Electrodynamic Spectroscope: a new superconducting microwave quantum sensorcQEDscope aims to enhance understanding of superconductivity and develop advanced quantum sensors using superconducting circuits to probe materials and create novel quantum systems. | ERC Starting... | € 1.480.000 | 2023 | Details |
sINGle microwave photon dEtection for hybrid quaNtum Information prOcessing and quantUm enhanced Sensing
This project aims to enhance single microwave photon detection to explore new luminescent systems, focusing on quantum computing, sensing applications, and dark-matter candidates.
Developing First-in-Class Diamond-based Quantum Microscopy for immediate semiconductor industry applications
QuantumDiamonds is developing a Super-resolution Quantum Imager for the semiconductor industry to achieve sub-100 nm imaging resolution and rapid diagnostics for chip defects, aiming for commercialization.
Microwave Quantum Photonics for Quantum Technology and Fundamental Physics
The project aims to develop advanced microwave photodetectors for high-resolution photon counting, enabling groundbreaking single-photon experiments and insights into quantum technology and many-body physics.
Atomic Scale Quantum Sensing and Information with Molecular Nanostructures on a Scanning Probe Tip
QuSINT aims to develop a mobile spin-qubit sensor using single electron spins for atomic-scale quantum measurements, enhancing solid-state quantum technology applications.
Circuit Quantum Electrodynamic Spectroscope: a new superconducting microwave quantum sensor
cQEDscope aims to enhance understanding of superconductivity and develop advanced quantum sensors using superconducting circuits to probe materials and create novel quantum systems.