NanoBiCar: A novel immunotherapy for infectious diseases
NanoBiCar aims to revolutionize bacterial infection treatment through innovative mRNA-based immunotherapy, targeting Mycobacterium tuberculosis to eliminate drug-resistant strains without generating resistance.
Projectdetails
Introduction
It is estimated that 20% of global mortality is associated with bacterial infections. The current treatment is based on the use of antibiotics, but nonspecific effects, difficulty in reaching intracellular bacteria, and the generation of antimicrobial resistance limit its effectiveness.
Tuberculosis Overview
Tuberculosis (TB) is the leading cause of mortality due to a single infectious agent: Mycobacterium tuberculosis (Mtb). Multidrug-resistant TB (MDR-TB) is a major threat to global health security. A quarter of the population is latently infected with Mtb, many of them MDR strains, so preventing new cases of this growing reservoir is a priority.
Immunotherapy as an Alternative
Immunotherapy is an alternative option, but its effectiveness is based on the immune response capacity of a compromised host.
NanoBiCar's Vision
NanoBiCar's long-term vision is to revolutionize the current treatment of bacterial infections with a groundbreaking and innovative immunotherapeutic approach. This approach aims to overcome many of the problems associated with treatment, with potential application beyond this field.
Proof of Concept
Using TB as a proof of concept, three immunotherapeutic platforms will be utilized, employing mRNAs encapsulated in lipid nanoparticles. These platforms have not been tested in bacterial diseases and are designed to eliminate:
- Intracellular (IC) bacteria
- Extracellular (EC) bacteria
Characteristics of the Immunotherapeutic Methods
These immunotherapeutic methods are characterized by being:
- Safe
- Economical
- Accessible
- Ready-to-use
- Specific, targeting latent, acute, and chronic infections
They do not generate resistance and are suitable for use in high-burden, low-resource settings. Additionally, they are effective regardless of the antibiotic resistance of the strain and its niche (IC or EC), the genetic background of the host, and the degree of immunocompetence.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.999.101 |
Totale projectbegroting | € 2.999.101 |
Tijdlijn
Startdatum | 1-2-2025 |
Einddatum | 31-1-2028 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITAT POLITECNICA DE VALENCIApenvoerder
- ACOSTA DOMINGUEZ ARMANDO
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
- SARMIENTO GARCIA SAN MIGUEL MARIA ELENA
- VICTOR PALLARUELO-SANTAMARIA
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
- ACADEMISCH ZIEKENHUIS LEIDEN
- THE FOUNDATION FOR MEDICAL RESEARCH INFRASTRUCTURAL DEVELOPMENT AND HEALTH SERVICES NEXT TO THE MEDICAL CENTER TEL AVIV
- INSTITUT DE INVESTIGACIO EN CIENCIES DE LA SALUT GERMANS TRIAS I PUJOL
- CONSORCIO CENTRO DE INVESTIGACION BIOMEDICA EN RED M.P.
- FUNDACION DE LA COMUNIDAD VALENCIANA CENTRO DE INVESTIGACION PRINCIPEFELIPE
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeted Nano-formulations for Treatment of MRSA: A multicomponent platform for nano-formulated treatment of resistant microbial infectionsLeadToTreat aims to develop targeted nano-formulations for treating MRSA infections by co-delivering novel low-drugability compounds and synergistic antibiotic combinations. | EIC Pathfinder | € 2.665.564 | 2022 | Details |
Advanced nanomaterials to target genomic and Z-DNA for bacterial biofilm eradicationBactEradiX aims to create a novel antimicrobial nanomaterial targeting biofilm Z-DNA to effectively eradicate chronic infections caused by drug-resistant bacteria. | EIC Pathfinder | € 2.996.312 | 2024 | Details |
Targeted Nano-formulations for Treatment of MRSA: A multicomponent platform for nano-formulated treatment of resistant microbial infections
LeadToTreat aims to develop targeted nano-formulations for treating MRSA infections by co-delivering novel low-drugability compounds and synergistic antibiotic combinations.
Advanced nanomaterials to target genomic and Z-DNA for bacterial biofilm eradication
BactEradiX aims to create a novel antimicrobial nanomaterial targeting biofilm Z-DNA to effectively eradicate chronic infections caused by drug-resistant bacteria.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
InnomABsIPA onderzoekt de haalbaarheid van het ontwikkelen van menselijke eiwitten als alternatief voor antibiotica tegen antimicrobiële resistentie. | Mkb-innovati... | € 14.888 | 2023 | Details |
Modular Targeted Nanoplatform for Immune Cell Regulation and TherapyImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative. | ERC Proof of... | € 150.000 | 2023 | Details |
Modification of liposomic nano-carriers: a novel strategy for improved drug-delivery and eradication of bacterial biofilmsThis project aims to develop and evaluate a novel drug delivery system to effectively treat and eradicate bacterial biofilms, addressing significant health and economic challenges. | ERC Proof of... | € 150.000 | 2022 | Details |
Allosteric modulation of immune checkpoint complexes as a new mode of therapeutic intervention in immunotherapyThe project aims to develop novel Nanobodies as safe and effective modulators of immune checkpoint complexes for cancer and autoimmune diseases, potentially outperforming current therapies. | ERC Advanced... | € 2.499.674 | 2024 | Details |
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance. | EIC Transition | € 1.881.875 | 2023 | Details |
InnomABs
IPA onderzoekt de haalbaarheid van het ontwikkelen van menselijke eiwitten als alternatief voor antibiotica tegen antimicrobiële resistentie.
Modular Targeted Nanoplatform for Immune Cell Regulation and Therapy
ImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative.
Modification of liposomic nano-carriers: a novel strategy for improved drug-delivery and eradication of bacterial biofilms
This project aims to develop and evaluate a novel drug delivery system to effectively treat and eradicate bacterial biofilms, addressing significant health and economic challenges.
Allosteric modulation of immune checkpoint complexes as a new mode of therapeutic intervention in immunotherapy
The project aims to develop novel Nanobodies as safe and effective modulators of immune checkpoint complexes for cancer and autoimmune diseases, potentially outperforming current therapies.
Clinical readiness of a live biotherapeutic for treatment of Non-Small Cell Lung Cancer (NSCLC)
Pulmobiotics aims to develop PB_LC, an engineered Mycoplasma pneumoniae strain, to enhance immunotherapy for NSCLC patients by improving T cell infiltration and overcoming treatment resistance.