MIcrobe-synthesised DNA NAnostructures for DIsplay-controlled Storage Cartridges
Develop a low-cost, energy-efficient data drive using bacterial cells to efficiently write, edit, store, and retrieve DNA-based data for long-term storage.
Projectdetails
Introduction
DNA has a huge potential for the long-term storage of large amounts of data. However, writing, editing, and reading DNA-based data is expensive and inefficient with current technologies.
Vision
Our vision is to develop a low-cost, energy-efficient, and fast data drive that is able to write, edit, store, and retrieve DNA-based data. The data drive is based on simple and easily available hardware components plus bacterial cells.
Technological Solution
The proposed technological solution enables the short-, medium-, and long-term storage of DNA-based data. To achieve this vision, we will exploit bacterial genetic mechanisms that were evolutionarily optimized for billions of years, such as:
- Colour-sensitive genetic switches
- DNA exchange processes
Objectives
We have defined two specific objectives to achieve our goal. As a proof-of-concept, we will store a large trajectory file of a molecular dynamics simulation encoded on DNA.
Consortium
Our consortium has six partners from four European countries. One research organization, two universities, and two SMEs will work together to achieve the outlined vision.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.999.506 |
Totale projectbegroting | € 3.999.506 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBHpenvoerder
- TECHNISCHE UNIVERSITAET MUENCHEN
- FACULTY OF SCIENCE UNIVERSITY OF ZAGREB
- DAY ONE SOCIETA A RESPONSABILITA LIMITATA
- EKO REFUGIUM D.O.O. ZA PROIZVODNJU, TRGOVINU I USLUGE
- RIBBON BIOLABS GMBH
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Next Generation Molecular Data StorageThis project aims to develop a cost-effective and efficient DNA nanostructure-based data storage system, enhancing longevity and reducing electronic waste compared to traditional media. | EIC Pathfinder | € 2.418.514 | 2023 | Details |
DNA Microfactory for Autonomous ArchivingDNAMIC aims to develop an autonomous, low-energy DNA microfactory for end-to-end data archiving, ensuring long-term storage compliance and disaster recovery through innovative encoding schemes. | EIC Pathfinder | € 2.437.522 | 2023 | Details |
Interoperable end-to-end platform of scalable and sustainable high-throughput technologies for DNA-based digital data storagePEARL-DNA aims to develop a high-throughput, modular DNA-based data storage platform to enhance longevity, efficiency, and integration in sustainable data management solutions. | EIC Pathfinder | € 3.999.857 | 2023 | Details |
DNA-based Infrastructure for Storage and ComputationThe DISCO project aims to engineer a robust DNA-based storage and computing platform, starting with a 10-bit prototype and scaling to hundreds of bits using advanced molecular techniques. | EIC Pathfinder | € 3.993.665 | 2023 | Details |
A dynamic, ultra-stable, random-access RNA retrieval databaseThis project aims to develop a regeneratable DNA-based solid-state storage system that allows selective data manipulation and long-term stability using enzymatic reactions and RNA inputs. | EIC Pathfinder | € 1.659.570 | 2023 | Details |
Next Generation Molecular Data Storage
This project aims to develop a cost-effective and efficient DNA nanostructure-based data storage system, enhancing longevity and reducing electronic waste compared to traditional media.
DNA Microfactory for Autonomous Archiving
DNAMIC aims to develop an autonomous, low-energy DNA microfactory for end-to-end data archiving, ensuring long-term storage compliance and disaster recovery through innovative encoding schemes.
Interoperable end-to-end platform of scalable and sustainable high-throughput technologies for DNA-based digital data storage
PEARL-DNA aims to develop a high-throughput, modular DNA-based data storage platform to enhance longevity, efficiency, and integration in sustainable data management solutions.
DNA-based Infrastructure for Storage and Computation
The DISCO project aims to engineer a robust DNA-based storage and computing platform, starting with a 10-bit prototype and scaling to hundreds of bits using advanced molecular techniques.
A dynamic, ultra-stable, random-access RNA retrieval database
This project aims to develop a regeneratable DNA-based solid-state storage system that allows selective data manipulation and long-term stability using enzymatic reactions and RNA inputs.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
DNA Encryption of Compartmentalized DNA FilesDNACryp aims to develop a molecular-level encryption method for DNA data storage, enhancing security and efficiency to meet future digital storage demands. | ERC Proof of... | € 150.000 | 2025 | Details |
Coding for DNA StorageThis project aims to develop advanced coding methods for DNA-based storage systems to enhance data integrity and recovery, potentially revolutionizing archiving technology and impacting related scientific fields. | ERC Consolid... | € 1.999.096 | 2022 | Details |
Molecular Storage System (MoSS): Intelligent DNA Data StorageThe MoSS project aims to develop a cost-effective DNA data storage system using novel enzymatic synthesis techniques to enable scalable, high-throughput writing of DNA. | EIC Transition | € 2.594.615 | 2022 | Details |
DNA-encoded REconfigurable and Active MatterThe project aims to develop DNA-encoded dynamic principles to create adaptive synthetic materials with life-like characteristics and multifunctional capabilities through innovative self-assembly and genetic programming. | ERC Advanced... | € 2.496.750 | 2023 | Details |
Reading DNA in real time for medical applicationsThe project aims to develop a high-throughput, real-time DNA analysis method using Laser-Assisted DNA Optical Mapping for liquid biopsies and biomedical applications, enhancing service and automation. | ERC Proof of... | € 150.000 | 2022 | Details |
DNA Encryption of Compartmentalized DNA Files
DNACryp aims to develop a molecular-level encryption method for DNA data storage, enhancing security and efficiency to meet future digital storage demands.
Coding for DNA Storage
This project aims to develop advanced coding methods for DNA-based storage systems to enhance data integrity and recovery, potentially revolutionizing archiving technology and impacting related scientific fields.
Molecular Storage System (MoSS): Intelligent DNA Data Storage
The MoSS project aims to develop a cost-effective DNA data storage system using novel enzymatic synthesis techniques to enable scalable, high-throughput writing of DNA.
DNA-encoded REconfigurable and Active Matter
The project aims to develop DNA-encoded dynamic principles to create adaptive synthetic materials with life-like characteristics and multifunctional capabilities through innovative self-assembly and genetic programming.
Reading DNA in real time for medical applications
The project aims to develop a high-throughput, real-time DNA analysis method using Laser-Assisted DNA Optical Mapping for liquid biopsies and biomedical applications, enhancing service and automation.