Computational design, fabrication and engineering methods for unconstrained, highly resource efficient, point-supported timber slabs in multi-storey buildings

The project develops innovative timber slab systems for multi-storey buildings, aiming to replace concrete with sustainable, adaptable, and efficient construction methods.

Subsidie
€ 2.603.887
2024

Projectdetails

Introduction

The project aims to develop novel design, engineering, and fabrication methods for point-supported timber slab structures in multi-storey buildings. It aims to provide the fundamental technologies for a sustainable alternative building system that could broadly replace point-supported reinforced concrete slabs, especially in urban building projects.

Objectives

The project aims to develop a universally applicable, suppliable, usable, and affordable alternative building system and make timber construction broadly available. It is based on a building system concept in which a complex arrangement of wood lamellas provides the potential for high structural performance.

Key Areas of Focus

Questions of design computation, structural engineering, simulation methods, and mechanical testing of this system will be addressed in the project.

  1. Design computation
  2. Structural engineering
  3. Simulation methods
  4. Mechanical testing

Surrogate Modelling Methods

Provided the complexity of the material makeup and potentially long computing times, surrogate modelling methods will be developed based on disciplinary modelling methods. These allow fast computation of various design options.

Intelligent Decision Support System

An AI-based Intelligent Decision Support System will integrate all surrogate models and provide informative design feedback of the universal timber slab system throughout all design stages.

Application and Flexibility

The building system will be applicable to multidirectional, long-span slabs and enable computationally derived geometric adaptivity to typical building project boundary conditions, such as:

  • Site
  • Program
  • Design intent

The possibility for free and sparse column layouts allows for higher design flexibility and the design of mixed-use urban platforms with great potential for long-term reusability.

Sustainability Impact

The system leverages computational design and construction to build bespoke, highly material-efficient, and digitally scalable building structures from wood. Hence, it provides high potential to sustainably and broadly disrupt predominant, energy- and carbon-intensive reinforced concrete slabs in building construction.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.603.887
Totale projectbegroting€ 2.603.887

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2027
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • UNIVERSITY OF STUTTGARTpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen EIC Pathfinder

EIC Pathfinder

CARBon-negative COMpression dominant structures for decarbonized and deconstructable CONcrete buildings

CARBCOMN aims to revolutionize zero-carbon concrete structures through innovative digital design and carbon-negative materials, enhancing sustainability and circularity in construction.

€ 3.603.457
EIC Pathfinder

Computation for a new age of Resource AWare architecture: waste-sourced and fast-growing bio-based materials

The project aims to revolutionize architecture, engineering, and construction by developing a novel resource model that utilizes waste-sourced materials to enhance sustainability and design innovation.

€ 3.997.635
EIC Pathfinder

Digital design and robotic fabrication of biofoams for adaptive mono-material architecture

The ARCHIBIOFOAM project aims to develop multifunctional, 3D-printable biofoams with programmable properties for sustainable architecture, enhancing performance while reducing CO2 emissions.

€ 3.422.982
EIC Pathfinder

Loam Walls with Algorithmically Generated 3D Natural Reinforcement

Developing AlgoLoam, a biodegradable, self-supporting loam wall solution reinforced with natural fibers, to reduce greenhouse gas emissions in sustainable architecture.

€ 4.532.625
EIC Pathfinder

digital based bio-waste derived meta-PANels Towards A REvolutionary building Identity

The PANTAREI project aims to reduce embodied CO2 in buildings by developing adaptive computational tools for bio-waste-derived meta-structures through a collaborative, multi-disciplinary approach.

€ 3.085.000

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

TIMBERTOWER

TIMBERTOWER ontwikkelt een innovatieve, modulaire houten windturbine toren met gebogen CLT-elementen, gericht op efficiënter materiaalgebruik en lagere CO2-uitstoot door digitale ontwerp- en productiemethoden.

€ 20.000
Mkb-innovati...

Onderzoek haalbaarheid van compleet circulaire houtskeletbouw in woningbouw

Bativo onderzoekt de haalbaarheid van een geautomatiseerde circulaire houtverwerkingslijn voor houtskeletbouw en staalframeconstructies, met focus op houtbesparing en CO2-vrije productie.

€ 20.000
Mkb-innovati...

Hightech Woningbouw - Geautomatiseerde digitale productielijn voor houtskeletbouw (HSB)

Het project ontwikkelt een geautomatiseerde productielijn voor prefab houtskeletbouw om de woningbouw te versnellen en verduurzamen.

€ 293.125
Mkb-innovati...

Afvalloos oneindig hout produceren

Het project onderzoekt de haalbaarheid van het hergebruik van resthout voor het produceren van duurzame, sterke balken met minimale afval en milieuvriendelijke lijmen.

€ 20.000
Mkb-innovati...

Duurzame industriële woningbouw

Het project onderzoekt de haalbaarheid van een nieuw prefab bouwsysteem met Cross Laminated Timber (CLT) voor verbeterde duurzaamheid, snelheid, kosten en kwaliteit.

€ 20.000