Computational design, fabrication and engineering methods for unconstrained, highly resource efficient, point-supported timber slabs in multi-storey buildings
The project develops innovative timber slab systems for multi-storey buildings, aiming to replace concrete with sustainable, adaptable, and efficient construction methods.
Projectdetails
Introduction
The project aims to develop novel design, engineering, and fabrication methods for point-supported timber slab structures in multi-storey buildings. It aims to provide the fundamental technologies for a sustainable alternative building system that could broadly replace point-supported reinforced concrete slabs, especially in urban building projects.
Objectives
The project aims to develop a universally applicable, suppliable, usable, and affordable alternative building system and make timber construction broadly available. It is based on a building system concept in which a complex arrangement of wood lamellas provides the potential for high structural performance.
Key Areas of Focus
Questions of design computation, structural engineering, simulation methods, and mechanical testing of this system will be addressed in the project.
- Design computation
- Structural engineering
- Simulation methods
- Mechanical testing
Surrogate Modelling Methods
Provided the complexity of the material makeup and potentially long computing times, surrogate modelling methods will be developed based on disciplinary modelling methods. These allow fast computation of various design options.
Intelligent Decision Support System
An AI-based Intelligent Decision Support System will integrate all surrogate models and provide informative design feedback of the universal timber slab system throughout all design stages.
Application and Flexibility
The building system will be applicable to multidirectional, long-span slabs and enable computationally derived geometric adaptivity to typical building project boundary conditions, such as:
- Site
- Program
- Design intent
The possibility for free and sparse column layouts allows for higher design flexibility and the design of mixed-use urban platforms with great potential for long-term reusability.
Sustainability Impact
The system leverages computational design and construction to build bespoke, highly material-efficient, and digitally scalable building structures from wood. Hence, it provides high potential to sustainably and broadly disrupt predominant, energy- and carbon-intensive reinforced concrete slabs in building construction.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.603.887 |
Totale projectbegroting | € 2.603.887 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 30-9-2027 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITY OF STUTTGARTpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
CARBon-negative COMpression dominant structures for decarbonized and deconstructable CONcrete buildingsCARBCOMN aims to revolutionize zero-carbon concrete structures through innovative digital design and carbon-negative materials, enhancing sustainability and circularity in construction. | EIC Pathfinder | € 3.603.457 | 2024 | Details |
Computation for a new age of Resource AWare architecture: waste-sourced and fast-growing bio-based materialsThe project aims to revolutionize architecture, engineering, and construction by developing a novel resource model that utilizes waste-sourced materials to enhance sustainability and design innovation. | EIC Pathfinder | € 3.997.635 | 2024 | Details |
Digital design and robotic fabrication of biofoams for adaptive mono-material architectureThe ARCHIBIOFOAM project aims to develop multifunctional, 3D-printable biofoams with programmable properties for sustainable architecture, enhancing performance while reducing CO2 emissions. | EIC Pathfinder | € 3.422.982 | 2024 | Details |
Loam Walls with Algorithmically Generated 3D Natural ReinforcementDeveloping AlgoLoam, a biodegradable, self-supporting loam wall solution reinforced with natural fibers, to reduce greenhouse gas emissions in sustainable architecture. | EIC Pathfinder | € 4.532.625 | 2024 | Details |
digital based bio-waste derived meta-PANels Towards A REvolutionary building IdentityThe PANTAREI project aims to reduce embodied CO2 in buildings by developing adaptive computational tools for bio-waste-derived meta-structures through a collaborative, multi-disciplinary approach. | EIC Pathfinder | € 3.085.000 | 2024 | Details |
CARBon-negative COMpression dominant structures for decarbonized and deconstructable CONcrete buildings
CARBCOMN aims to revolutionize zero-carbon concrete structures through innovative digital design and carbon-negative materials, enhancing sustainability and circularity in construction.
Computation for a new age of Resource AWare architecture: waste-sourced and fast-growing bio-based materials
The project aims to revolutionize architecture, engineering, and construction by developing a novel resource model that utilizes waste-sourced materials to enhance sustainability and design innovation.
Digital design and robotic fabrication of biofoams for adaptive mono-material architecture
The ARCHIBIOFOAM project aims to develop multifunctional, 3D-printable biofoams with programmable properties for sustainable architecture, enhancing performance while reducing CO2 emissions.
Loam Walls with Algorithmically Generated 3D Natural Reinforcement
Developing AlgoLoam, a biodegradable, self-supporting loam wall solution reinforced with natural fibers, to reduce greenhouse gas emissions in sustainable architecture.
digital based bio-waste derived meta-PANels Towards A REvolutionary building Identity
The PANTAREI project aims to reduce embodied CO2 in buildings by developing adaptive computational tools for bio-waste-derived meta-structures through a collaborative, multi-disciplinary approach.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
TIMBERTOWERTIMBERTOWER ontwikkelt een innovatieve, modulaire houten windturbine toren met gebogen CLT-elementen, gericht op efficiënter materiaalgebruik en lagere CO2-uitstoot door digitale ontwerp- en productiemethoden. | Mkb-innovati... | € 20.000 | 2021 | Details |
Onderzoek haalbaarheid van compleet circulaire houtskeletbouw in woningbouwBativo onderzoekt de haalbaarheid van een geautomatiseerde circulaire houtverwerkingslijn voor houtskeletbouw en staalframeconstructies, met focus op houtbesparing en CO2-vrije productie. | Mkb-innovati... | € 20.000 | 2022 | Details |
Hightech Woningbouw - Geautomatiseerde digitale productielijn voor houtskeletbouw (HSB)Het project ontwikkelt een geautomatiseerde productielijn voor prefab houtskeletbouw om de woningbouw te versnellen en verduurzamen. | Mkb-innovati... | € 293.125 | 2021 | Details |
Afvalloos oneindig hout producerenHet project onderzoekt de haalbaarheid van het hergebruik van resthout voor het produceren van duurzame, sterke balken met minimale afval en milieuvriendelijke lijmen. | Mkb-innovati... | € 20.000 | 2023 | Details |
Duurzame industriële woningbouwHet project onderzoekt de haalbaarheid van een nieuw prefab bouwsysteem met Cross Laminated Timber (CLT) voor verbeterde duurzaamheid, snelheid, kosten en kwaliteit. | Mkb-innovati... | € 20.000 | 2020 | Details |
TIMBERTOWER
TIMBERTOWER ontwikkelt een innovatieve, modulaire houten windturbine toren met gebogen CLT-elementen, gericht op efficiënter materiaalgebruik en lagere CO2-uitstoot door digitale ontwerp- en productiemethoden.
Onderzoek haalbaarheid van compleet circulaire houtskeletbouw in woningbouw
Bativo onderzoekt de haalbaarheid van een geautomatiseerde circulaire houtverwerkingslijn voor houtskeletbouw en staalframeconstructies, met focus op houtbesparing en CO2-vrije productie.
Hightech Woningbouw - Geautomatiseerde digitale productielijn voor houtskeletbouw (HSB)
Het project ontwikkelt een geautomatiseerde productielijn voor prefab houtskeletbouw om de woningbouw te versnellen en verduurzamen.
Afvalloos oneindig hout produceren
Het project onderzoekt de haalbaarheid van het hergebruik van resthout voor het produceren van duurzame, sterke balken met minimale afval en milieuvriendelijke lijmen.
Duurzame industriële woningbouw
Het project onderzoekt de haalbaarheid van een nieuw prefab bouwsysteem met Cross Laminated Timber (CLT) voor verbeterde duurzaamheid, snelheid, kosten en kwaliteit.