Unlocking serial Aluminium Additive Manufacturing with Molten Metal Deposition technology
ValCUN develops a revolutionary Molten Metal Deposition technology for efficient, cost-effective, and rapid additive manufacturing of complex aluminum parts for serial production.
Projectdetails
Introduction
High-strength, lightweight, and conductivity are properties that set aluminum apart as the 2nd most widely used metal in the world. Mechanical manufacturing techniques like CNC milling or die casting are industry standards for mass production of industrial parts.
Challenges in Additive Manufacturing
However, when it comes to additive manufacturing (AM) to increase the complexity of the parts, there is no existing AM technology for serial runs or on-demand/spare parts at competitive speeds and costs.
ValCUN's Solution
ValCUN fills the gap for complex aluminum parts to deliver the most economical, fastest, and energy-efficient AM technology, ready for serial production.
Molten Metal Deposition Technology
Molten Metal Deposition (MMD) is our unique single-step metal additive manufacturing technology, with an initial focus on aluminum.
Advantages of MMD
Unlike powder- and laser-based AM techniques (DED, LPBF, FDM/MIM), we produce parts directly with liquid metal from aluminum wire feedstock. This represents a paradigm shift in metal AM, allowing us to:
- Reduce production costs by 75%
- Achieve production speeds that are 10x faster
- Enable a high degree of automation for 1-10k serial batch production with minimal post-processing.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.987 |
Totale projectbegroting | € 3.571.411 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- VALCUN BVpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Metal Additive Manufacturing with sinter-based Cold Metal Fusion Technology for mass production of metal partsCMF is a patented process that combines sinter-based Powder Metallurgy with Selective Laser Sintering, enabling cost-effective, scalable production of complex metal parts using existing plastic AM machines. | EIC Accelerator | € 2.099.562 | 2022 | Details |
An innovative and versatile Additive Manufacturing Process: Dynamic Molding3Deus Dynamics aims to revolutionize 3D printing by integrating dynamic molding technology to enhance production efficiency and material compatibility, focusing on medical applications. | EIC Accelerator | € 2.500.000 | 2023 | Details |
Metal Additive Manufacturing with sinter-based Cold Metal Fusion Technology for mass production of metal parts
CMF is a patented process that combines sinter-based Powder Metallurgy with Selective Laser Sintering, enabling cost-effective, scalable production of complex metal parts using existing plastic AM machines.
An innovative and versatile Additive Manufacturing Process: Dynamic Molding
3Deus Dynamics aims to revolutionize 3D printing by integrating dynamic molding technology to enhance production efficiency and material compatibility, focusing on medical applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multi Material Additive Manufacturing with Electrostatic Cold SprayMadeCold aims to revolutionize additive manufacturing by developing a novel solid state deposition process that enhances efficiency, scalability, and material versatility for aerospace, energy, and hybrid sectors. | EIC Pathfinder | € 2.915.568 | 2024 | Details |
Additive Manufacturing of Amorphous Metals for Soft MagneticsAM2SoftMag aims to revolutionize the manufacturing of high-performance soft-magnetic components via 3D printing, enhancing energy efficiency in electrical machines while promoting sustainability. | EIC Pathfinder | € 3.450.856 | 2022 | Details |
Heterogeneities-guided alloy design by and for 4D printingHeteroGenius4D aims to develop tailored alloys for additive manufacturing by leveraging microstructural heterogeneities to enhance performance and enable 4D printing through integrated computational materials engineering. | ERC Starting... | € 1.499.999 | 2024 | Details |
Shedding light on a new 3D metal printing techniqueMeltify onderzoekt de haalbaarheid van een kostenefficiënte 3D metaalprinter met LED-technologie voor diverse sectoren. | Mkb-innovati... | € 20.000 | 2022 | Details |
Innovative digital twin concept of complex microstructure evolution in multi-component materialsmuTWIN aims to develop a digital twin for predicting microstructure evolution in metal additive manufacturing, enhancing design flexibility and reducing time-to-market for advanced materials. | ERC Proof of... | € 150.000 | 2023 | Details |
Multi Material Additive Manufacturing with Electrostatic Cold Spray
MadeCold aims to revolutionize additive manufacturing by developing a novel solid state deposition process that enhances efficiency, scalability, and material versatility for aerospace, energy, and hybrid sectors.
Additive Manufacturing of Amorphous Metals for Soft Magnetics
AM2SoftMag aims to revolutionize the manufacturing of high-performance soft-magnetic components via 3D printing, enhancing energy efficiency in electrical machines while promoting sustainability.
Heterogeneities-guided alloy design by and for 4D printing
HeteroGenius4D aims to develop tailored alloys for additive manufacturing by leveraging microstructural heterogeneities to enhance performance and enable 4D printing through integrated computational materials engineering.
Shedding light on a new 3D metal printing technique
Meltify onderzoekt de haalbaarheid van een kostenefficiënte 3D metaalprinter met LED-technologie voor diverse sectoren.
Innovative digital twin concept of complex microstructure evolution in multi-component materials
muTWIN aims to develop a digital twin for predicting microstructure evolution in metal additive manufacturing, enhancing design flexibility and reducing time-to-market for advanced materials.