Photonic Integrated Circuits For Access System in Telecom
PICadvanced aims to develop a novel Photonic Integrated Circuit design for Optical Network Units, enabling 10Gbps broadband with minimal upgrades, reduced costs, and lower environmental impact.
Projectdetails
Introduction
The number of internet-enabled users, devices, and bandwidth-hungry applications is increasing constantly, and network operators are struggling to meet the demand for more bandwidth. The problem is most acutely felt by end users of fixed broadband connections, typically served by passive optical networks (PONs): speed throttling and connection drop-outs are the most-reported issues.
Challenges for Telecom Operators
Telecom operators are typically too margin-stressed to invest in entirely new infrastructure and have to maximize returns on existing PONs. Developments to deliver higher transfer rates currently focus on discrete optical components, which have reached their limits in terms of:
- Scalability
- Performance
- Footprint
- Power consumption
- Reliability
- Cost
The integration of optical components into Photonic Integrated Circuits (PICs) offers a new technology trajectory that will overcome these limitations, but the increasing component density this entails has challenges.
PICadvanced's Solution
Through a string of successful R&D projects conducted in world-class facilities by an expert team, PICadvanced has laid the foundation for a novel PIC design serving as a platform for an entirely new generation of optical transceivers, specifically Optical Network Units (ONUs) deployed at end user premises.
This overcomes the current limit of 2.5Gbps and offers higher bandwidths with minimal upgrades of end user hardware while fulfilling the strict requirements of the telecom sector regarding:
- Footprint
- Power consumption
- Cost
Expected Outcomes
Our demonstrator will achieve 10Gbps, open a technology roadmap towards 25Gbps/50Gbps, and enable the telecom sector to achieve:
- A better quality of service
- Higher customer satisfaction
- More efficient utilization of existing fiber optic network assets
We will also demonstrate how this new generation of fast broadband technology can be delivered to end users with a lower environmental footprint by:
- Reducing raw material input
- Achieving 40% lower hardware costs
- Achieving 20% lower energy consumption
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.444.378 |
Totale projectbegroting | € 3.491.968 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- PICADVANCED, SApenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
a Quasi Coherent Receiver Optical Sub-Assembly technology for improved access networksBifrost aims to develop a breakthrough ROSA using Quasi Coherent technology to enhance signal detection, doubling infrastructure reach while significantly reducing energy costs in Internet networks. | EIC Accelerator | € 2.498.266 | 2023 | Details |
NEWPhotonics: The Future of Data Center TechnologiesNEWPhotonics develops efficient all-optical chip solutions to reduce energy consumption and costs in hyperscale data centers, enhancing speed, reliability, and scalability. | EIC Accelerator | € 2.499.742 | 2022 | Details |
a Quasi Coherent Receiver Optical Sub-Assembly technology for improved access networks
Bifrost aims to develop a breakthrough ROSA using Quasi Coherent technology to enhance signal detection, doubling infrastructure reach while significantly reducing energy costs in Internet networks.
NEWPhotonics: The Future of Data Center Technologies
NEWPhotonics develops efficient all-optical chip solutions to reduce energy consumption and costs in hyperscale data centers, enhancing speed, reliability, and scalability.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal ProcessingATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies. | ERC Synergy ... | € 13.999.999 | 2025 | Details |
CIRCULATING LIGHT ON ANY PHOTONIC PLATFORMCIRCULIGHT aims to revolutionize Photonic Integrated Circuits by developing a low-cost, miniaturized optical circulator using advanced materials, enhancing functionality and sustainability across diverse applications. | EIC Pathfinder | € 2.908.754 | 2024 | Details |
Adaptive microcombs for innovative connectivity in datacenter applications and optical clocksAmica aims to revolutionize datacentre interconnects by developing a scalable microcomb technology for multi-wavelength laser sources, targeting petabit-per-second speeds and efficient mass production. | EIC Transition | € 2.499.340 | 2024 | Details |
Geïntegreerde detector voor FBG sensorsystemenDit project ontwikkelt geavanceerde Photonic Integrated Circuits voor een nauwkeuriger glasfiber-optisch meetsysteem, gericht op het verhogen van meetcapaciteit en resolutie in hightech toepassingen. | Mkb-innovati... | € 156.085 | 2015 | Details |
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks. | EIC Transition | € 2.307.188 | 2022 | Details |
Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal Processing
ATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies.
CIRCULATING LIGHT ON ANY PHOTONIC PLATFORM
CIRCULIGHT aims to revolutionize Photonic Integrated Circuits by developing a low-cost, miniaturized optical circulator using advanced materials, enhancing functionality and sustainability across diverse applications.
Adaptive microcombs for innovative connectivity in datacenter applications and optical clocks
Amica aims to revolutionize datacentre interconnects by developing a scalable microcomb technology for multi-wavelength laser sources, targeting petabit-per-second speeds and efficient mass production.
Geïntegreerde detector voor FBG sensorsystemen
Dit project ontwikkelt geavanceerde Photonic Integrated Circuits voor een nauwkeuriger glasfiber-optisch meetsysteem, gericht op het verhogen van meetcapaciteit en resolutie in hightech toepassingen.
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.
PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks.